Suppr超能文献

放射学中基于卷积神经网络的深度学习。

Deep learning with convolutional neural network in radiology.

作者信息

Yasaka Koichiro, Akai Hiroyuki, Kunimatsu Akira, Kiryu Shigeru, Abe Osamu

机构信息

Department of Radiology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan.

Department of Radiology, Graduate School of Medical Sciences, International University of Health and Welfare, 4-3 Kozunomori, Narita, Chiba, Japan.

出版信息

Jpn J Radiol. 2018 Apr;36(4):257-272. doi: 10.1007/s11604-018-0726-3. Epub 2018 Mar 1.

Abstract

Deep learning with a convolutional neural network (CNN) is gaining attention recently for its high performance in image recognition. Images themselves can be utilized in a learning process with this technique, and feature extraction in advance of the learning process is not required. Important features can be automatically learned. Thanks to the development of hardware and software in addition to techniques regarding deep learning, application of this technique to radiological images for predicting clinically useful information, such as the detection and the evaluation of lesions, etc., are beginning to be investigated. This article illustrates basic technical knowledge regarding deep learning with CNNs along the actual course (collecting data, implementing CNNs, and training and testing phases). Pitfalls regarding this technique and how to manage them are also illustrated. We also described some advanced topics of deep learning, results of recent clinical studies, and the future directions of clinical application of deep learning techniques.

摘要

最近,使用卷积神经网络(CNN)的深度学习因其在图像识别方面的高性能而备受关注。利用这种技术,图像本身可用于学习过程,无需在学习过程之前进行特征提取。重要特征能够自动学习。除了深度学习技术之外,得益于硬件和软件的发展,该技术在放射图像上的应用开始得到研究,用于预测临床有用信息,如病变的检测和评估等。本文沿着实际过程(收集数据、实现卷积神经网络以及训练和测试阶段)阐述了有关卷积神经网络深度学习的基本技术知识。还说明了该技术存在的陷阱以及如何应对这些陷阱。我们还描述了深度学习的一些高级主题、近期临床研究的结果以及深度学习技术临床应用的未来方向。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验