Suppr超能文献

半通道介导的容积调节有助于缺血预处理诱导的心肌细胞保护。

Hemichannel-mediated volume regulation contributes to IPC-induced cardiomyocyte protection.

作者信息

Wang Wenying, Zheng Dedong, Li Huiya, Huang Jinhua, Chen Huijun, Ying Teng, Fang Jun, Luo Yukun

机构信息

Department of Cardiology, Fujian Medical University Union Hospital, Fujian Institute of Coronary Heart Disease, Fuzhou, Fujian 350001, P.R. China.

Department of Hematology, Fujian Medical University Union Hospital, Fujian Institute of Hematology, Fuzhou, Fujian 350001, P.R. China.

出版信息

Exp Ther Med. 2019 Mar;17(3):1847-1854. doi: 10.3892/etm.2018.7127. Epub 2018 Dec 21.

Abstract

Cx43 has been documented to be involved in ischemic preconditioning (IPC). However, the participation of Cx43-formed hemichannels in IPC and the potential underlying mechanisms remain unclear. The present study focused on cardiomyocytes' volume regulation during IPC to investigate the role of hemichannels in the IPC-induced cardioprotection. In the study, mice cardiomyocytes were respectively treated with a hemichannel blocker, octanol or 18a-Glycyrrhizic acid (18a-GA), and a Cx43-silenced lentivirus. They were subsequently cultured in hypotonic solution to simulate ischemic reperfusion (SIR) and systemic ischemic preconditioning (SIP). Cell morphology and volumetric (area) change were detected by inverted microscopy at 30 min following the addition of hypotonic solution. Cardiomyocyte mortality was assessed by trypan blue stain assay. The analyses revealed that regardless of the treatments, hypotonic solution aggravated cell edema: Compared with the initial condition (the moment before the solution addition, 0 min), the volumetric area increased significantly 30 min later (for hypotonic+DMSO, 5,050±1,511 vs. 3,464±723 µm; for hypotonic+scramble lentiviral vector, 5,517±1,128 vs. 2,331±536 µm; P<0.05, respectively). Either treatment alleviated the edematous condition when a comparison was made between 30 min after the hypotonic addition and 0 min (for hypotonic+octanol, 2,990±765 vs. 2,821±773 µm; for hypotonic+18a-GA, 4,817±1,306 vs. 4,762±1,271 µm; for hypotonic+Cx43-silenced, 3,627±688 vs. 3,419±814 µm; P>0.05 for all). Notably, results indicated that the SIP group had lower mortality rates compared with its SIR counterpart; the hypotonic+octanol, hypotonic+18a-GA, and hypotonic+Cx43-silenced group showed markedly-declined mortality when compared with their respective control groups (respectively, 35.70±1.02, 30.76±2.20 vs. 53.58±2.14%; 30.89±2.37 vs. 54.12±2.55%; P<0.05 for all). The results suggest that ischemic preconditioning may provide cardioprotection by blocking the opening of the hemichannels and further mediating the volume regulation of cardiomyocytes.

摘要

已有文献证明Cx43参与缺血预处理(IPC)。然而,由Cx43形成的半通道在IPC中的参与情况及其潜在的作用机制仍不清楚。本研究聚焦于IPC期间心肌细胞的体积调节,以探讨半通道在IPC诱导的心脏保护中的作用。在该研究中,小鼠心肌细胞分别用半通道阻滞剂辛醇或18α-甘草酸(18α-GA)以及Cx43沉默慢病毒进行处理。随后将它们置于低渗溶液中培养以模拟缺血再灌注(SIR)和全身缺血预处理(SIP)。在加入低渗溶液后30分钟,通过倒置显微镜检测细胞形态和体积(面积)变化。通过台盼蓝染色法评估心肌细胞死亡率。分析显示,无论何种处理,低渗溶液都会加重细胞水肿:与初始状态(加入溶液前的时刻,0分钟)相比,30分钟后体积面积显著增加(低渗+二甲基亚砜组,5050±1511对3464±723µm;低渗+乱序慢病毒载体组,5517±1128对2331±536µm;P均<0.05)。当比较低渗溶液加入后30分钟和0分钟时,任何一种处理都减轻了水肿状态(低渗+辛醇组,2990±765对2821±773µm;低渗+18α-GA组,4817±1306对4762±1271µm;低渗+Cx43沉默组,3627±688对3419±814µm;所有P>0.05)。值得注意的是,结果表明SIP组的死亡率低于其SIR对应组;低渗+辛醇组、低渗+18α-GA组和低渗+Cx43沉默组与各自的对照组相比,死亡率显著下降(分别为35.70±1.02、30.76±2.20对53.58±2.14%;30.89±2.37对54.12±2.55%;所有P<0.05)。结果表明,缺血预处理可能通过阻断半通道的开放并进一步介导心肌细胞的体积调节来提供心脏保护。

相似文献

1
Hemichannel-mediated volume regulation contributes to IPC-induced cardiomyocyte protection.
Exp Ther Med. 2019 Mar;17(3):1847-1854. doi: 10.3892/etm.2018.7127. Epub 2018 Dec 21.
6
Connexin 43 and ischemic preconditioning.
Cardiovasc Res. 2004 May 1;62(2):335-44. doi: 10.1016/j.cardiores.2003.12.017.
8
Connexin43 and ischemic preconditioning.
Adv Cardiol. 2006;42:213-227. doi: 10.1159/000092571.
9
Direct evidence of chloride ion efflux in ischaemic and pharmacological preconditioning of cultured cardiomyocytes.
Cardiovasc Res. 2010 Aug 1;87(3):545-51. doi: 10.1093/cvr/cvq084. Epub 2010 Mar 13.

引用本文的文献

1
Channel Behavior and Voltage Gating of a Cx43 Mutant Simulating Preconditioning.
Bioelectricity. 2023 Sep 1;5(3):181-187. doi: 10.1089/bioe.2023.0024. Epub 2023 Sep 12.
2
Imaging in experimental models of diabetes.
Acta Diabetol. 2022 Feb;59(2):147-161. doi: 10.1007/s00592-021-01826-3. Epub 2021 Nov 15.
3
Cardiac Connexin-43 Hemichannels and Pannexin1 Channels: Provocative Antiarrhythmic Targets.
Int J Mol Sci. 2020 Dec 29;22(1):260. doi: 10.3390/ijms22010260.

本文引用的文献

2
Pathophysiology Underlying the Bimodal Edema Phenomenon After Myocardial Ischemia/Reperfusion.
J Am Coll Cardiol. 2015 Aug 18;66(7):816-828. doi: 10.1016/j.jacc.2015.06.023.
3
New observations regarding post-ischemia/reperfusion myocardial swelling.
J Am Coll Cardiol. 2015 Feb 3;65(4):324-326. doi: 10.1016/j.jacc.2014.11.006. Epub 2014 Nov 17.
4
Enhanced cell volume regulation: a key mechanism in local and remote ischemic preconditioning.
Am J Physiol Cell Physiol. 2014 Jun 15;306(12):C1191-9. doi: 10.1152/ajpcell.00259.2013. Epub 2014 Apr 23.
5
A micropatterning approach for imaging dynamic Cx43 trafficking to cell-cell borders.
FEBS Lett. 2014 Apr 17;588(8):1439-45. doi: 10.1016/j.febslet.2014.01.002. Epub 2014 Jan 17.
6
Ischemic preconditioning protects cardiomyocyte mitochondria through mechanisms independent of cytosol.
J Mol Cell Cardiol. 2014 Mar;68:79-88. doi: 10.1016/j.yjmcc.2014.01.001. Epub 2014 Jan 13.
7
Autoregulation of connexin43 gap junction formation by internally translated isoforms.
Cell Rep. 2013 Nov 14;5(3):611-8. doi: 10.1016/j.celrep.2013.10.009. Epub 2013 Nov 7.
8
The role of opioid receptor agonists in ischemic preconditioning.
Eur J Pharmacol. 2013 Nov 15;720(1-3):401-8. doi: 10.1016/j.ejphar.2013.10.001. Epub 2013 Oct 8.
10
The Akt1 isoform is an essential mediator of ischaemic preconditioning.
J Cell Mol Med. 2012 Aug;16(8):1739-49. doi: 10.1111/j.1582-4934.2011.01491.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验