Suppr超能文献

Effects of Zoospore Concentration and Application Pressure on Foliage Blight of Catharanthus roseus Caused by Phytophthora nicotianae.

作者信息

Banko T J, Richardson P A, Hong C X

机构信息

Virginia Tech, Hampton Roads Agricultural Research and Extension Center, Virginia Beach 23455.

出版信息

Plant Dis. 2006 Mar;90(3):297-301. doi: 10.1094/PD-90-0297.

Abstract

This study investigated the effects of inoculum concentration, application pressure, use of carbon dioxide (CO), and agitation associated with passage through a spray nozzle on zoospore survival and on foliage blight caused by Phytophthora nicotianae. In a greenhouse experiment, plants of Catharanthus roseus were inoculated by spraying zoospore suspensions at pressures of 210, 420, and 630 kPa (30, 60, and 90 lbs/in [psi]). A low-pressure 35-kPa (5-psi) control inoculation was provided with a hand-operated aspirator-type mister. There was a consistent reduction in level of disease with increased application pressure, regardless of the zoospore concentration. To determine the source of this disease reduction, laboratory assays were conducted. Zoospore suspensions were pressurized to 210, 420, and 630 kPa with CO or air, then transferred from the pressure bottle into a flask by either spraying or pouring. From the flask, the suspensions were spread over plates of PARP-V8 agar and incubated for 72 h, at which time total colony numbers were recorded. CO significantly reduced zoospore survival. Pressure strength and method of spore transfer out of pressure bottles also impacted survival to lesser extents. There were significant interactions between pressure source and means of spore suspension transfer, and between pressure strength and means of spore transfer. These results may lead to development of alternative methods of water decontamination to prevent inoculum from entering crop systems through irrigation water.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验