Centre for Infectious Diseases and Microbiology, Fungal Pathogenesis Group, Westmead Institute for Medical Research, Westmead, New South Wales, Australia.
Sydney Medical School-Westmead, University of Sydney at Westmead Hospital, Westmead, New South Wales, Australia.
PLoS One. 2019 Feb 21;14(2):e0212651. doi: 10.1371/journal.pone.0212651. eCollection 2019.
The phosphate sensing and acquisition (PHO) pathway of Cryptococcus neoformans is essential for growth in phosphate-limiting conditions and for dissemination of infection in a mouse model. Its key transcription factor, Pho4, regulates expression of genes controlling the acquisition of phosphate from both external and cellular sources. One such gene, BTA1, is highly up-regulated during phosphate starvation. Given that a significant proportion of cellular phosphate is incorporated into phospholipids, and that the Pho4-dependent BTA1 gene encodes an enzyme predicted to catalyse production of a phosphorus-free betaine lipid, we investigated whether phospholipids provide an accessible reservoir of phosphate during phosphate deficiency. By comparing lipid profiles of phosphate-starved WT C. neoformans, PHO4 (pho4Δ) and BTA1 (bta1Δ) deletion mutants using thin layer chromatography and liquid chromatography mass spectrometry, we showed that phosphatidylcholine (PC) is substituted by the phosphorus-free betaine lipids diacylglyceryl-N,N,N-trimethylhomoserine (DGTS) and diacylgyceryl hydroxymethyl-N,N,N-trimethyl-beta-alanine (DGTA) in a Pho4- and Bta1-dependent manner, and that BTA1 encodes a functional DGTS synthase. Synthesis of DGTA tightly correlated with that of DGTS, consistent with DGTS being the precursor of DGTA. Similar to pho4Δ, bta1Δ grew more slowly than WT in cell culture medium (RPMI) and was hypovirulent in a murine model of cryptococcosis. In contrast to pho4Δ, bta1Δ tolerated alkaline pH and disseminated to the brain. Our results demonstrate that Bta1-dependent substitution of PC by betaine lipids is tightly regulated in C. neoformans by the PHO pathway, to conserve phosphate and preserve membrane integrity and function. This phospholipid remodeling strategy may also contribute to cryptococcal virulence during host infection.
新生隐球菌的磷酸盐感应和摄取 (PHO) 途径对于在磷酸盐限制条件下的生长和在小鼠模型中的感染传播至关重要。其关键转录因子 Pho4 调节控制从外部和细胞来源获取磷酸盐的基因表达。其中一个基因 BTA1 在磷酸盐饥饿时高度上调。鉴于细胞内磷酸盐的很大一部分被掺入磷脂中,并且 Pho4 依赖性 BTA1 基因编码一种预测催化产生无磷甜菜碱脂质的酶,我们研究了在磷酸盐缺乏时磷脂是否提供了一种可利用的磷酸盐储备库。通过比较使用薄层色谱法和液相色谱质谱法对磷酸盐饥饿的 WT 新生隐球菌、PHO4(pho4Δ)和 BTA1(bta1Δ)缺失突变体的脂质图谱,我们表明磷Pho4 和 Bta1 依赖性方式下,磷脂酰胆碱 (PC) 被无磷甜菜碱脂质二酰基甘油-N,N,N-三甲基高丝氨酸 (DGTS) 和二酰基甘油羟甲基-N,N,N-三甲基-β-丙氨酸 (DGTA) 取代,并且 BTA1 编码一种功能性 DGTS 合酶。DGTA 的合成与 DGTS 的合成紧密相关,这与 DGTS 是 DGTA 的前体一致。与 pho4Δ 相似,bta1Δ 在细胞培养基(RPMI)中的生长速度比 WT 慢,并且在新生隐球菌的小鼠模型中毒力降低。与 pho4Δ 相反,bta1Δ 能耐受碱性 pH 值并传播到大脑。我们的结果表明,在新生隐球菌中,Bta1 依赖性 PC 被甜菜碱脂质取代受到 PHO 途径的严格调控,以保存磷酸盐并维持膜的完整性和功能。这种磷脂重塑策略也可能有助于隐球菌在宿主感染期间的毒力。