Toh-e Akio, Ohkusu Misako, Li Hao-Man, Shimizu Kiminori, Takahashi-Nakaguchi Azusa, Gonoi Toru, Kawamoto Susumu, Kanesaki Yu, Yoshikawa Hirofumi, Nishizawa Masafumi
Medical Mycology Research Center, Chiba University, Chiba City, Chiba 260-8673, Japan.
Medical Mycology Research Center, Chiba University, Chiba City, Chiba 260-8673, Japan.
Fungal Genet Biol. 2015 Jul;80:19-30. doi: 10.1016/j.fgb.2015.04.019. Epub 2015 May 5.
Cryptococcus neoformans is a pathogenic basidiomycetous yeast that can cause life-threatening meningoencephalitis in immuno-compromized patients. To propagate in the human body, this organism has to acquire phosphate that functions in cellular signaling pathways and is also an essential component of nucleic acids and phospholipids. Thus it is reasonable to assume that C. neoformans (Cn) possesses a phosphate regulatory system (PHO system) analogous to that of other fungi. By BLAST searches using the amino acid sequences of the components of the PHO system of Saccharomyces cerevisiae (Sc), we found potential counterparts to ScPHO genes in C. neoformans, namely, acid phosphatase (CnPHO2), the cyclin-dependent protein kinase (CDK) inhibitor (CnPHO81), Pho85-cyclin (CnPHO80), and CDK (CnPHO85). Disruption of each candidate gene, except CnPHO85, followed by phenotypic analysis, identified most of the basic components of the CnPHO system. We found that CnPHO85 was essential for the growth of C. neoformans, having regulatory function in the CnPHO system. Genetic screening and ChIP analysis, showed that CnPHO4 encodes a transcription factor that binds to the CnPHO genes in a Pi-dependent manner. By RNA-seq analysis of the wild-type and the regulatory mutants of the CnPHO system, we found C. neoformans genes whose expression is controlled by the regulators of the CnPHO system. Thus the CnPHO system shares many properties with the ScPHO system, but expression of those CnPHO genes that encode regulators is controlled by phosphate starvation, which is not the case in the ScPHO system (except ScPHO81). We also could identify some genes involved in the stress response of the pathogenic yeast, but CnPho4 appeared to be responsible only for phosphate starvation.
新型隐球菌是一种致病性担子菌酵母,可在免疫功能低下的患者中引起危及生命的脑膜脑炎。为了在人体中繁殖,这种生物体必须获取磷酸盐,磷酸盐在细胞信号通路中起作用,也是核酸和磷脂的重要组成部分。因此,有理由假设新型隐球菌(Cn)拥有类似于其他真菌的磷酸盐调节系统(PHO系统)。通过使用酿酒酵母(Sc)PHO系统各组分的氨基酸序列进行BLAST搜索,我们在新型隐球菌中发现了ScPHO基因的潜在对应物,即酸性磷酸酶(CnPHO2)、细胞周期蛋白依赖性蛋白激酶(CDK)抑制剂(CnPHO81)、Pho85-细胞周期蛋白(CnPHO80)和CDK(CnPHO85)。除CnPHO85外,对每个候选基因进行破坏,随后进行表型分析,确定了CnPHO系统的大部分基本组分。我们发现CnPHO85对新型隐球菌的生长至关重要,在CnPHO系统中具有调节功能。遗传筛选和ChIP分析表明,CnPHO4编码一种转录因子,该转录因子以Pi依赖性方式与CnPHO基因结合。通过对CnPHO系统的野生型和调节突变体进行RNA-seq分析,我们发现了新型隐球菌中其表达受CnPHO系统调节因子控制的基因。因此,CnPHO系统与ScPHO系统具有许多共同特性,但那些编码调节因子的CnPHO基因的表达受磷酸盐饥饿控制,而在ScPHO系统中并非如此(ScPHO81除外)。我们还能够鉴定出一些参与致病性酵母应激反应的基因,但CnPho4似乎仅对磷酸盐饥饿负责。