Laboratoire de Nanomédecine, Imagerie et Thérapeutiques, EA 4662, Centre Hospitalier Universitaire de Besançon, Université Bourgogne Franche-Comté, 16 route de Gray, 25030, Besançon cedex, France.
FEMTO-ST Institute, Université Bourgogne Franche-Comté, CNRS, 15B avenue des Montboucons, 25030, Besanco̧n, Cedex, France.
J Mol Model. 2019 Feb 21;25(3):72. doi: 10.1007/s00894-019-3965-z.
The confinement of anticancer carboplatin molecules (CBPT) in boron nitride nanotubes (BNNTs) with various sections was studied by means of density functional theory and molecular dynamic simulations. We show that the molecular insertion in BNNT is favored depending on the tube radius. The range of the energy adsorption varied from -1 eV to -2 eV depending on BNNT dimension. We also determined the critical diameter for the possible vectorization of the anticancer molecule. Indeed, the hydrophobicity of small BNNT radius R < 5.5 Å) is so large that CBPT encapsulation is impossible to achieve. On the contrary, a larger radius could offer an ideal situation to enhance drug delivery and allow a progressive release of the therapeutic near its target. Comparison with carbon nanotubes allowed us to draw conclusions on the best adapted nanovector for CBPT.
采用密度泛函理论和分子动力学模拟研究了不同截面的氮化硼纳米管(BNNTs)对抗癌碳铂分子(CBPT)的限制作用。我们表明,分子插入 BNNT 是有利的,这取决于管半径。能量吸附范围从-1 eV 到-2 eV 不等,这取决于 BNNT 的尺寸。我们还确定了抗癌分子可能的向量化的临界直径。事实上,小 BNNT 半径 R < 5.5 Å 的疏水性非常大,以至于不可能实现 CBPT 的封装。相反,更大的半径可以提供一个理想的情况,以增强药物输送,并允许治疗剂在其靶标附近逐步释放。与碳纳米管的比较使我们能够得出关于 CBPT 最佳适应的纳米载体的结论。