Suppr超能文献

考虑技术异质性的中国电力行业污染排放控制最优路径。

Optimal path for controlling pollution emissions in the Chinese electric power industry considering technological heterogeneity.

机构信息

College of Economics and Management, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China.

出版信息

Environ Sci Pollut Res Int. 2019 Apr;26(11):11087-11099. doi: 10.1007/s11356-019-04526-2. Epub 2019 Feb 21.

Abstract

The electric power industry is not only an important part in the Chinese economic system but also the key industry with the highest emissions of air pollutants in China. This paper aims to control the pollution emissions of the Chinese electric power industry and enhance its electric-generation capacity though pollution-emission allocation patterns and inefficiency elimination. The data envelopment analysis centralized allocation model (DEA-CA) under metafrontier framework is adopted to distribute pollution emissions and electric-generation capacity considering technological heterogeneity at regional and national levels. The empirical result shows that the emission reduction responsibility is directly proportional to regional power generation performance. The metafrontier framework allocates emission permits to combine the national and regional, which makes the adjustment of each province more reasonable. At last, the relationship between the aggregate optimal electricity capacity and the pollution emission control coefficient is shown to follow an inverted U-shape curve, which implies that a modest emission control policy might be more appropriate for the electric power industry to achieve the joint optimizing goal of electricity generation enhancement and pollution emission control.

摘要

电力行业不仅是中国经济体系的重要组成部分,也是中国空气污染物排放最高的关键行业。本文旨在通过污染排放分配模式和效率消除来控制中国电力行业的污染排放,提高其发电能力。采用基于超前沿框架的数据包络分析集中分配模型(DEA-CA),考虑区域和国家层面的技术异质性,分配污染排放和发电能力。实证结果表明,减排责任与区域发电绩效成正比。超前沿框架分配排放许可证,将国家和区域结合起来,使各省的调整更加合理。最后,展示了总最优电量与污染排放控制系数之间的关系遵循倒 U 形曲线,这意味着适度的排放控制政策可能更适合电力行业实现发电增强和污染排放控制的联合优化目标。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验