Hefei National Laboratory for Physical Science at Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.
National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China.
Adv Mater. 2019 Apr;31(15):e1808135. doi: 10.1002/adma.201808135. Epub 2019 Feb 21.
Electrocatalytic CO reduction at considerably low overpotentials still remains a great challenge. Here, a positively charged single-atom metal electrocatalyst to largely reduce the overpotentials is designed and hence CO electroreduction performance is accelerated. Taking the metal Sn as an example, kilogram-scale single-atom Sn on N-doped graphene is first fabricated by a quick freeze-vacuum drying-calcination method. Synchrotron-radiation X-ray absorption fine structure and high-angle annular dark-field scanning transmission electron microscopy demonstrate the atomically dispersed Sn atoms are positively charged, which enables CO activation and protonation to proceed spontaneously through stabilizing CO * and HCOO *, affirmed by in situ Fourier transform infrared spectra and Gibbs free energy calculations. Furthermore, N-doping facilitates the rate-limiting formate desorption step, verified by the decreased desorption energy from 2.16 to 1.01 eV and the elongated SnHCOO bond length. As an result, single-atom Sn on N-doped graphene exhibits a very low onset overpotential down to 60 mV for formate production and shows a very large turnover frequency up to 11930 h , while its electroreduction activity proceeds without deactivation even after 200 h. This work offers a new pathway for manipulating electrocatalytic performance.
在相当低的过电势下进行电催化 CO 还原仍然是一个巨大的挑战。在这里,设计了带正电荷的单原子金属电催化剂,以大大降低过电势,从而加速 CO 电还原性能。以金属 Sn 为例,通过快速冷冻-真空干燥-煅烧法首次制备了公斤级的单原子 Sn 负载在 N 掺杂石墨烯上。同步辐射 X 射线吸收精细结构和高角度环形暗场扫描透射电子显微镜证明原子分散的 Sn 原子带正电荷,这使得 CO 的激活和质子化能够通过稳定 CO和 HCOO自发进行,这通过原位傅里叶变换红外光谱和吉布斯自由能计算得到了证实。此外,N 掺杂有利于限速甲酸盐脱附步骤,从 2.16 eV 降低到 1.01 eV 和拉长的 SnHCOO 键长证明了这一点。因此,单原子 Sn 负载在 N 掺杂石墨烯上表现出非常低的起始过电势,仅为 60 mV 即可生成甲酸盐,并且具有非常大的周转频率,高达 11930 h-1,而其电还原活性在 200 h 后仍不会失活。这项工作为操纵电催化性能提供了一条新途径。