Peng Bo, She Hao, Wei Zihao, Sun Zhiyi, Deng Ziwei, Sun Zhongti, Chen Wenxing
Energy & Catalysis Center, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China.
Guangxi Key Laboratory of Polysaccharide Materials and Modification, Laboratory of Chemical and Biological Trans-forming Process of Guangxi Higher Education Institutes, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, 530008, China.
Nat Commun. 2025 Mar 5;16(1):2217. doi: 10.1038/s41467-025-57573-4.
The interaction of p-d orbitals at bimetallic sites plays a crucial role in determining the catalytic reactivity, which facilitates the modulation of charges and enhances the efficiency of CO electroreduction process. Here, we show a ligand co-etching approach to create asymmetric Zn-Sn dual-atom sites (DASs) within metal-organic framework (MOF)-derived yolk-shell carbon frameworks (named ZnSn/SNC). The DASs comprise one Sn center (p-block) partially doped with sulfur and one Zn center (d-block) with N coordination, facilitating the coupling of p-d orbitals between the Zn-Sn dimer. The N-Zn-Sn-S/N arrangement displays an asymmetric distribution of charges and atoms, leading to a stable adsorption configuration of HCOO* intermediates. In H-type cell, ZnSn/SNC exhibits an impressive formate Faraday efficiency of 94.6% at -0.84 V. In flow cell, the asymmetric electronic architecture of ZnSn/SNC facilitates high accessibility, leading to a high current density of -315.2 mA cm at -0.90 V. Theoretical calculations show the asymmetric sites in ZnSn/SNC with ideal adsorption affinity lower the CO reduction barrier, thus improve the overall efficiency of CO reduction.
双金属位点处的p-d轨道相互作用在决定催化反应活性方面起着关键作用,这有助于电荷调制并提高CO电还原过程的效率。在此,我们展示了一种配体共蚀刻方法,用于在金属有机框架(MOF)衍生的蛋黄壳碳框架(命名为ZnSn/SNC)内创建不对称的Zn-Sn双原子位点(DASs)。这些DASs包括一个部分掺杂硫的Sn中心(p区)和一个具有N配位的Zn中心(d区),促进了Zn-Sn二聚体之间p-d轨道的耦合。N-Zn-Sn-S/N排列显示出电荷和原子的不对称分布,导致HCOO*中间体的稳定吸附构型。在H型电池中,ZnSn/SNC在-0.84 V时表现出令人印象深刻的甲酸盐法拉第效率,为94.6%。在流动电池中,ZnSn/SNC的不对称电子结构有利于高可达性,在-0.90 V时导致-315.2 mA cm的高电流密度。理论计算表明,ZnSn/SNC中具有理想吸附亲和力的不对称位点降低了CO还原势垒,从而提高了CO还原的整体效率。