VaxNewMo LLC, St. Louis, MO, 63108, USA.
Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2R3, Canada.
Nat Commun. 2019 Feb 21;10(1):891. doi: 10.1038/s41467-019-08869-9.
Chemical synthesis of conjugate vaccines, consisting of a polysaccharide linked to a protein, can be technically challenging, and in vivo bacterial conjugations (bioconjugations) have emerged as manufacturing alternatives. Bioconjugation relies upon an oligosaccharyltransferase to attach polysaccharides to proteins, but currently employed enzymes are not suitable for the generation of conjugate vaccines when the polysaccharides contain glucose at the reducing end, which is the case for ~75% of Streptococcus pneumoniae capsules. Here, we use an O-linking oligosaccharyltransferase to generate a polyvalent pneumococcal bioconjugate vaccine with polysaccharides containing glucose at their reducing end. In addition, we show that different vaccine carrier proteins can be glycosylated using this system. Pneumococcal bioconjugates are immunogenic, protective and rapidly produced within E. coli using recombinant techniques. These proof-of-principle experiments establish a platform to overcome limitations of other conjugating enzymes enabling the development of bioconjugate vaccines for many important human and animal pathogens.
结合疫苗由多糖与蛋白偶联而成,其化学合成具有一定技术难度,因此体内细菌偶联(生物偶联)已成为一种替代的生产方法。生物偶联依赖于寡糖基转移酶将多糖连接到蛋白上,但目前使用的酶并不适用于具有还原末端葡萄糖的多糖(约 75%的肺炎链球菌荚膜多糖属于这种情况)的结合疫苗的生产。在这里,我们使用 O-连接寡糖基转移酶生成具有还原末端葡萄糖的多价肺炎球菌生物结合疫苗。此外,我们还表明,该系统可用于糖基化不同的疫苗载体蛋白。肺炎球菌生物结合物具有免疫原性、保护作用,并且可以使用重组技术在大肠杆菌中快速生产。这些原理验证实验建立了一个克服其他偶联酶限制的平台,为许多重要的人类和动物病原体开发生物结合疫苗。