Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, UK.
Microb Cell Fact. 2022 Apr 21;21(1):66. doi: 10.1186/s12934-022-01792-7.
Glycoengineering, in the biotechnology workhorse bacterium, Escherichia coli, is a rapidly evolving field, particularly for the production of glycoconjugate vaccine candidates (bioconjugation). Efficient production of glycoconjugates requires the coordinated expression within the bacterial cell of three components: a carrier protein, a glycan antigen and a coupling enzyme, in a timely fashion. Thus, the choice of a suitable E. coli host cell is of paramount importance. Microbial chassis engineering has long been used to improve yields of chemicals and biopolymers, but its application to vaccine production is sparse.
In this study we have engineered a family of 11 E. coli strains by the removal and/or addition of components rationally selected for enhanced expression of Streptococcus pneumoniae capsular polysaccharides with the scope of increasing yield of pneumococcal conjugate vaccines. Importantly, all strains express a detoxified version of endotoxin, a concerning contaminant of therapeutics produced in bacterial cells. The genomic background of each strain was altered using CRISPR in an iterative fashion to generate strains without antibiotic markers or scar sequences.
Amongst the 11 modified strains generated in this study, E. coli Falcon, Peregrine and Sparrowhawk all showed increased production of S. pneumoniae serotype 4 capsule. Eagle (a strain without enterobacterial common antigen, containing a GalNAc epimerase and PglB expressed from the chromosome) and Sparrowhawk (a strain without enterobacterial common antigen, O-antigen ligase and chain length determinant, containing a GalNAc epimerase and chain length regulators from Streptococcus pneumoniae) respectively produced an AcrA-SP4 conjugate with 4 × and 14 × more glycan than that produced in the base strain, W3110. Beyond their application to the production of pneumococcal vaccine candidates, the bank of 11 new strains will be an invaluable resource for the glycoengineering community.
糖基工程在生物技术的主力菌大肠杆菌中是一个快速发展的领域,特别是对于糖缀合物疫苗候选物(生物缀合)的生产。糖缀合物的高效生产需要在细菌细胞内及时协调表达三种成分:载体蛋白、聚糖抗原和偶联酶。因此,选择合适的大肠杆菌宿主细胞至关重要。微生物底盘工程长期以来一直用于提高化学品和生物聚合物的产量,但在疫苗生产中的应用却很少。
在这项研究中,我们通过有针对性地去除和/或添加组件,对 11 种大肠杆菌菌株进行了工程改造,这些组件是经过合理选择的,可增强肺炎链球菌荚膜多糖的表达,旨在提高肺炎球菌结合疫苗的产量。重要的是,所有菌株都表达了一种内毒素的解毒版本,内毒素是细菌细胞中产生的治疗药物的一个令人担忧的污染物。我们使用 CRISPR 以迭代的方式改变每个菌株的基因组背景,生成没有抗生素标记或疤痕序列的菌株。
在这项研究中生成的 11 种改良菌株中,Falcon、Peregrine 和 Sparrowhawk 菌株均显示出肺炎链球菌 4 型荚膜的产量增加。Eagle(一种不含肠细菌共同抗原、含有 GalNAc 差向异构酶和 PglB 的菌株,由染色体表达)和 Sparrowhawk(一种不含肠细菌共同抗原、O-抗原连接酶和链长决定簇、含有 GalNAc 差向异构酶和来自肺炎链球菌的链长调节剂的菌株)分别产生了一种 AcrA-SP4 缀合物,其聚糖含量比基础菌株 W3110 高 4 倍和 14 倍。除了应用于肺炎球菌候选疫苗的生产外,这 11 种新菌株的库将成为糖基工程社区的宝贵资源。