École nationale d'ingénieurs de Brest, Brest, France.
Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan.
NPJ Syst Biol Appl. 2019 Feb 15;5:5. doi: 10.1038/s41540-019-0084-5. eCollection 2019.
Owing to their self-organizing evolutionary plasticity, cancers remain evasive to modern treatment strategies. Previously, for sensitizing tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-resistant human fibrosarcoma (HT1080), we developed and validated a dynamic computational model that showed the inhibition of protein kinase (PK)C, using bisindolylmaleimide (BIS) I, enhances apoptosis with 95% cell death. Although promising, the long-term effect of remaining ~ 5% cells is a mystery. Will they remain unchanged or are they able to proliferate? To address this question, here we adopted a discrete spatiotemporal cellular automata model utilizing simple rules modified from the famous "Conway's game of life". Based on three experimental initializations: cell numbers obtained from untreated (high), treatment with TRAIL only (moderate), and treatment with TRAIL and BIS I (low), the simulations show cell proliferation in time and space. Notably, when all cells are fixed in their initial space, the proliferation is rapid for high and moderate cell numbers, however, slow and steady for low number of cells. However, when mesenchymal-like random movement was introduced, the proliferation becomes significant even for low cell numbers. Experimental verification showed high proportion of mesenchymal cells in TRAIL and BIS I treatment compared with untreated or TRAIL only treatment. In agreement with the model with cell movement, we observed rapid proliferation of the remnant cells in TRAIL and BIS I treatment over time. Hence, our work highlights the importance of mesenchymal-like cellular movement for cancer proliferation. Nevertheless, re-treatment of TRAIL and BIS I on proliferating cancers is still largely effective.
由于其自我组织进化的可塑性,癌症仍然逃避现代治疗策略。此前,为了敏化肿瘤坏死因子相关凋亡诱导配体(TRAIL)耐药的人纤维肉瘤(HT1080),我们开发并验证了一种动态计算模型,该模型表明,使用双吲哚马来酰亚胺(BIS)I 抑制蛋白激酶(PK)C 可增强凋亡,使 95%的细胞死亡。尽管很有希望,但仍有~5%的细胞存活的长期影响是一个谜。它们会保持不变还是能够增殖?为了解决这个问题,我们在这里采用了离散时空细胞自动机模型,利用了从著名的“康威生命游戏”修改而来的简单规则。基于三种实验初始化:未经处理(高)、仅用 TRAIL 处理(中)和用 TRAIL 和 BIS I 处理(低)获得的细胞数量,模拟显示细胞在时间和空间上的增殖。值得注意的是,当所有细胞都固定在其初始空间时,高细胞数和中细胞数的增殖迅速,而低细胞数的增殖缓慢且稳定。然而,当引入类似间充质的随机运动时,即使是低细胞数也会导致显著的增殖。实验验证表明,与未处理或仅用 TRAIL 处理相比,TRAIL 和 BIS I 处理中的间充质细胞比例较高。与具有细胞运动的模型一致,我们观察到 TRAIL 和 BIS I 处理中的残留细胞随着时间的推移迅速增殖。因此,我们的工作强调了类似间充质的细胞运动对癌症增殖的重要性。然而,对增殖性癌症重新进行 TRAIL 和 BIS I 治疗仍然非常有效。