Suppr超能文献

基于生物库的不平衡二分类表型全基因组关联研究的稳健荟萃分析。

Robust meta-analysis of biobank-based genome-wide association studies with unbalanced binary phenotypes.

机构信息

Department of Biostatistics and Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, Michigan.

Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark.

出版信息

Genet Epidemiol. 2019 Jul;43(5):462-476. doi: 10.1002/gepi.22197. Epub 2019 Feb 22.

Abstract

With the availability of large-scale biobanks, genome-wide scale phenome-wide association studies are being instrumental in discovering novel genetic variants associated with clinical phenotypes. As increasing number of such association results from different biobanks become available, methods to meta-analyse those association results is of great interest. Because the binary phenotypes in biobank-based studies are mostly unbalanced in their case-control ratios, very few methods can provide well-calibrated tests for associations. For example, traditional Z-score-based meta-analysis often results in conservative or anticonservative Type I error rates in such unbalanced scenarios. We propose two meta-analysis strategies that can efficiently combine association results from biobank-based studies with such unbalanced phenotypes, using the saddlepoint approximation-based score test method. Our first method involves sharing the overall genotype counts from each study, and the second method involves sharing an approximation of the distribution of the score test statistic from each study using cubic Hermite splines. We compare our proposed methods with a traditional Z-score-based meta-analysis strategy using numerical simulations and real data applications, and demonstrate the superior performance of our proposed methods in terms of Type I error control.

摘要

随着大型生物库的出现,全基因组范围的表型全基因组关联研究正在成为发现与临床表型相关的新型遗传变异的有力工具。随着越来越多的来自不同生物库的此类关联结果可用,对这些关联结果进行荟萃分析的方法引起了极大的兴趣。由于生物库研究中的二元表型在病例对照比中大多不平衡,很少有方法可以为关联提供良好校准的检验。例如,传统的基于 Z 分数的荟萃分析在这种不平衡的情况下通常会导致保守或反保守的 I 型错误率。我们提出了两种荟萃分析策略,它们可以使用基于鞍点逼近的评分检验方法有效地结合来自基于生物库的研究的关联结果,这些策略适用于具有不平衡表型的情况。我们的第一种方法涉及共享每个研究的总体基因型计数,第二种方法涉及使用三次 Hermite 样条共享每个研究的评分检验统计量分布的近似值。我们使用数值模拟和真实数据应用比较了我们提出的方法与传统的基于 Z 分数的荟萃分析策略,并证明了我们提出的方法在控制 I 型错误方面的优越性能。

相似文献

1
Robust meta-analysis of biobank-based genome-wide association studies with unbalanced binary phenotypes.
Genet Epidemiol. 2019 Jul;43(5):462-476. doi: 10.1002/gepi.22197. Epub 2019 Feb 22.
2
UK Biobank Whole-Exome Sequence Binary Phenome Analysis with Robust Region-Based Rare-Variant Test.
Am J Hum Genet. 2020 Jan 2;106(1):3-12. doi: 10.1016/j.ajhg.2019.11.012. Epub 2019 Dec 19.
3
A Fast and Accurate Method for Genome-wide Scale Phenome-wide G × E Analysis and Its Application to UK Biobank.
Am J Hum Genet. 2019 Dec 5;105(6):1182-1192. doi: 10.1016/j.ajhg.2019.10.008. Epub 2019 Nov 14.
4
A Fast and Accurate Algorithm to Test for Binary Phenotypes and Its Application to PheWAS.
Am J Hum Genet. 2017 Jul 6;101(1):37-49. doi: 10.1016/j.ajhg.2017.05.014. Epub 2017 Jun 8.
5
Efficient mixed model approach for large-scale genome-wide association studies of ordinal categorical phenotypes.
Am J Hum Genet. 2021 May 6;108(5):825-839. doi: 10.1016/j.ajhg.2021.03.019. Epub 2021 Apr 8.
6
Efficiently controlling for case-control imbalance and sample relatedness in large-scale genetic association studies.
Nat Genet. 2018 Sep;50(9):1335-1341. doi: 10.1038/s41588-018-0184-y. Epub 2018 Aug 13.
7
Joint analysis of multiple phenotypes for extremely unbalanced case-control association studies.
Genet Epidemiol. 2023 Mar;47(2):185-197. doi: 10.1002/gepi.22513. Epub 2023 Jan 24.
8
A Fast and Accurate Method for Genome-Wide Time-to-Event Data Analysis and Its Application to UK Biobank.
Am J Hum Genet. 2020 Aug 6;107(2):222-233. doi: 10.1016/j.ajhg.2020.06.003. Epub 2020 Jun 25.
10
Scalable and Robust Regression Methods for Phenome-Wide Association Analysis on Large-Scale Biobank Data.
Front Genet. 2021 Jun 15;12:682638. doi: 10.3389/fgene.2021.682638. eCollection 2021.

引用本文的文献

4
A Fast and Accurate Method for Genome-Wide Time-to-Event Data Analysis and Its Application to UK Biobank.
Am J Hum Genet. 2020 Aug 6;107(2):222-233. doi: 10.1016/j.ajhg.2020.06.003. Epub 2020 Jun 25.
5
An adaptive test for meta-analysis of rare variant association studies.
Genet Epidemiol. 2020 Jan;44(1):104-116. doi: 10.1002/gepi.22273. Epub 2019 Dec 12.
6
A Fast and Accurate Method for Genome-wide Scale Phenome-wide G × E Analysis and Its Application to UK Biobank.
Am J Hum Genet. 2019 Dec 5;105(6):1182-1192. doi: 10.1016/j.ajhg.2019.10.008. Epub 2019 Nov 14.

本文引用的文献

1
Efficiently controlling for case-control imbalance and sample relatedness in large-scale genetic association studies.
Nat Genet. 2018 Sep;50(9):1335-1341. doi: 10.1038/s41588-018-0184-y. Epub 2018 Aug 13.
2
A Fast and Accurate Algorithm to Test for Binary Phenotypes and Its Application to PheWAS.
Am J Hum Genet. 2017 Jul 6;101(1):37-49. doi: 10.1016/j.ajhg.2017.05.014. Epub 2017 Jun 8.
3
Next-generation genotype imputation service and methods.
Nat Genet. 2016 Oct;48(10):1284-1287. doi: 10.1038/ng.3656. Epub 2016 Aug 29.
4
Genome-wide Association Analysis of Psoriatic Arthritis and Cutaneous Psoriasis Reveals Differences in Their Genetic Architecture.
Am J Hum Genet. 2015 Dec 3;97(6):816-36. doi: 10.1016/j.ajhg.2015.10.019. Epub 2015 Nov 28.
5
The challenges, advantages and future of phenome-wide association studies.
Immunology. 2014 Feb;141(2):157-65. doi: 10.1111/imm.12195.
6
Recommended joint and meta-analysis strategies for case-control association testing of single low-count variants.
Genet Epidemiol. 2013 Sep;37(6):539-50. doi: 10.1002/gepi.21742. Epub 2013 Jun 20.
7
Meta-analysis methods for genome-wide association studies and beyond.
Nat Rev Genet. 2013 Jun;14(6):379-89. doi: 10.1038/nrg3472. Epub 2013 May 9.
8
Cohort Profile: the HUNT Study, Norway.
Int J Epidemiol. 2013 Aug;42(4):968-77. doi: 10.1093/ije/dys095. Epub 2012 Aug 9.
9
Random-effects model aimed at discovering associations in meta-analysis of genome-wide association studies.
Am J Hum Genet. 2011 May 13;88(5):586-98. doi: 10.1016/j.ajhg.2011.04.014.
10
A flexible and accurate genotype imputation method for the next generation of genome-wide association studies.
PLoS Genet. 2009 Jun;5(6):e1000529. doi: 10.1371/journal.pgen.1000529. Epub 2009 Jun 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验