Suppr超能文献

一种针对 HP1/Swi6 的 RNA 适体可在 S.pombe 的异位基因座促进异染色质形成。

An RNA aptamer to HP1/Swi6 facilitates heterochromatin formation at an ectopic locus in S.pombe.

机构信息

a Center for Innovation in Molecular and Pharmaceutical Sciences (CIMPS) , Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus , Telangana , India.

出版信息

RNA Biol. 2019 Jun;16(6):742-753. doi: 10.1080/15476286.2019.1584026. Epub 2019 Mar 19.

Abstract

In the fission yeast Schizosaccharomyces pombe (S.pombe), heterochromatin domains are established and maintained by protein complexes that contain numerous RNA binding domains among their components. The fission yeast HP1 protein Swi6 is one such component and contains an unstructured RNA-binding hinge, which is important for the integrity and silencing of heterochromatin. In this study, we have used an RNA aptamer that likely binds to the Swi6 hinge with high affinity, as a tool to perturb the natural interactions mediated by this domain. When the hinge is blocked by the aptamer RNA, Swi6 appears to become less restricted to the pericentromeres and is enriched at specific euchromatic loci. This suggests a role for the Swi6 hinge, along with the chromoshadow domain (previously shown) in controlling the spread of heterochromatin in S.pombe. The study also highlights the potential of using a synthetic aptamer RNA as a tool to perturb nucleic acid - protein interaction in vivo with the objective of understanding the functional relevance of such an interaction.

摘要

在裂殖酵母 Schizosaccharomyces pombe(S.pombe)中,异染色质域是通过包含许多 RNA 结合结构域的蛋白质复合物建立和维持的。裂殖酵母 HP1 蛋白 Swi6 就是这样的一个组成部分,它含有一个无结构的 RNA 结合铰链,该铰链对于异染色质的完整性和沉默至关重要。在这项研究中,我们使用了一种可能与 Swi6 铰链具有高亲和力的 RNA 适体作为工具,来干扰该结构域介导的自然相互作用。当铰链被适体 RNA 阻断时,Swi6 似乎不再局限于着丝粒,并且在特定的常染色质区域富集。这表明 Swi6 铰链与 chromoshadow 结构域(之前已显示)一起在控制 S.pombe 中异染色质的扩散中发挥作用。该研究还突出了使用合成适体 RNA 作为工具在体内干扰核酸-蛋白质相互作用的潜力,目的是了解这种相互作用的功能相关性。

相似文献

1
An RNA aptamer to HP1/Swi6 facilitates heterochromatin formation at an ectopic locus in S.pombe.
RNA Biol. 2019 Jun;16(6):742-753. doi: 10.1080/15476286.2019.1584026. Epub 2019 Mar 19.
2
Biochemical Basis for Distinct Roles of the Heterochromatin Proteins Swi6 and Chp2.
J Mol Biol. 2017 Nov 24;429(23):3666-3677. doi: 10.1016/j.jmb.2017.09.012. Epub 2017 Sep 20.
3
A conformational switch in HP1 releases auto-inhibition to drive heterochromatin assembly.
Nature. 2013 Apr 18;496(7445):377-81. doi: 10.1038/nature12032. Epub 2013 Mar 13.
4
H3K9 methylation extends across natural boundaries of heterochromatin in the absence of an HP1 protein.
EMBO J. 2015 Nov 12;34(22):2789-803. doi: 10.15252/embj.201591320. Epub 2015 Oct 5.
7
Diverse roles of HP1 proteins in heterochromatin assembly and functions in fission yeast.
Proc Natl Acad Sci U S A. 2009 Jun 2;106(22):8998-9003. doi: 10.1073/pnas.0813063106. Epub 2009 May 14.
8
Msc1 links dynamic Swi6/HP1 binding to cell fate determination.
Proc Natl Acad Sci U S A. 2009 Jan 27;106(4):1163-8. doi: 10.1073/pnas.0811161106. Epub 2009 Jan 21.
9
HP1(Swi6) mediates the recognition and destruction of heterochromatic RNA transcripts.
Mol Cell. 2012 Jul 27;47(2):215-27. doi: 10.1016/j.molcel.2012.05.009. Epub 2012 Jun 7.
10
In vivo dynamics of Swi6 in yeast: evidence for a stochastic model of heterochromatin.
Mol Cell Biol. 2004 Apr;24(8):3157-67. doi: 10.1128/MCB.24.8.3157-3167.2004.

引用本文的文献

1
HP1 maintains protein stability of H3K9 methyltransferases and demethylases.
EMBO Rep. 2022 Apr 5;23(4):e53581. doi: 10.15252/embr.202153581. Epub 2022 Feb 15.

本文引用的文献

1
Disruption of an RNA-binding hinge region abolishes LHP1-mediated epigenetic repression.
Genes Dev. 2017 Nov 1;31(21):2115-2120. doi: 10.1101/gad.305227.117. Epub 2017 Dec 6.
2
Unique roles for histone H3K9me states in RNAi and heritable silencing of transcription.
Nature. 2017 Jul 27;547(7664):463-467. doi: 10.1038/nature23267. Epub 2017 Jun 22.
3
RNA-mediated regulation of heterochromatin.
Curr Opin Cell Biol. 2017 Jun;46:102-109. doi: 10.1016/j.ceb.2017.05.004. Epub 2017 Jun 11.
4
Chemical Inhibitors of Epigenetic Methyllysine Reader Proteins.
Biochemistry. 2016 Mar 22;55(11):1570-83. doi: 10.1021/acs.biochem.5b01073. Epub 2015 Dec 28.
5
H3K9 methylation extends across natural boundaries of heterochromatin in the absence of an HP1 protein.
EMBO J. 2015 Nov 12;34(22):2789-803. doi: 10.15252/embj.201591320. Epub 2015 Oct 5.
6
The long non-coding RNA world in yeasts.
Biochim Biophys Acta. 2016 Jan;1859(1):147-54. doi: 10.1016/j.bbagrm.2015.08.003. Epub 2015 Aug 8.
7
Fluorescence labeling of short RNA by oxidation at the 3'-end.
Methods Mol Biol. 2015;1297:113-20. doi: 10.1007/978-1-4939-2562-9_8.
8
Implementation of the CRISPR-Cas9 system in fission yeast.
Nat Commun. 2014 Oct 29;5:5344. doi: 10.1038/ncomms6344.
9
New strategies for evaluation and analysis of SELEX experiments.
Biomed Res Int. 2014;2014:849743. doi: 10.1155/2014/849743. Epub 2014 Mar 19.
10
Determinants of heterochromatic siRNA biogenesis and function.
Mol Cell. 2014 Jan 23;53(2):262-76. doi: 10.1016/j.molcel.2013.11.014. Epub 2013 Dec 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验