Suppr超能文献

基于新自适应衰减贝叶斯卡尔曼平滑器的超声图像自动肌纤维方向跟踪。

Automatic Muscle Fiber Orientation Tracking in Ultrasound Images Using a New Adaptive Fading Bayesian Kalman Smoother.

出版信息

IEEE Trans Image Process. 2019 Aug;28(8):3714-3727. doi: 10.1109/TIP.2019.2899941. Epub 2019 Feb 18.

Abstract

This paper proposes a new algorithm for automatic estimation of muscle fiber orientation (MFO) in musculoskeletal ultrasound images, which is commonly used for both diagnosis and rehabilitation assessment of patients. The algorithm is based on a novel adaptive fading Bayesian Kalman filter (AF-BKF) and an automatic region of interest (ROI) extraction method. The ROI is first enhanced by the Gabor filter (GF) and extracted automatically using the revoting constrained Radon transform (RCRT) approach. The dominant MFO in the ROI is then detected by the RT and tracked by the proposed AF-BKF, which employs simplified Gaussian mixtures to approximate the non-Gaussian state densities and a new adaptive fading method to update the mixture parameters. An AF-BK smoother (AF-BKS) is also proposed by extending the AF-BKF using the concept of Rauch-Tung-Striebel smoother for further smoothing the fascicle orientations. The experimental results and comparisons show that: 1) the maximum segmentation error of the proposed RCRT is below nine pixels, which is sufficiently small for MFO tracking; 2) the accuracy of MFO gauged by RT in the ROI enhanced by the GF is comparable to that of using multiscale vessel enhancement filter-based method and better than those of local RT and revoting Hough transform approaches; and 3) the proposed AF-BKS algorithm outperforms the other tested approaches and achieves a performance close to those obtained by experienced operators (the overall covariance obtained by the AF-BKS is 3.19, which is rather close to that of the operators, 2.86). It, thus, serves as a valuable tool for automatic estimation of fascicle orientations and possibly for other applications in musculoskeletal ultrasound images.

摘要

本文提出了一种新的算法,用于自动估计肌肉纤维方向(MFO)在肌肉骨骼超声图像,这是常用于诊断和康复评估的患者。该算法是基于一个新的自适应衰落贝叶斯卡尔曼滤波器(AF-BKF)和一个自动感兴趣区域(ROI)提取方法。ROI 首先通过 Gabor 滤波器(GF)增强,并使用重新投票约束 Radon 变换(RCRT)方法自动提取。ROI 中的主导 MFO 然后由 RT 检测,并由所提出的 AF-BKF 跟踪,该方法使用简化的高斯混合来近似非高斯状态密度和新的自适应衰落方法来更新混合参数。还通过使用 Rauch-Tung-Striebel 平滑器的概念扩展 AF-BKF 来提出 AF-BK 平滑器(AF-BKS),以进一步平滑肌束方向。实验结果和比较表明:1)提出的 RCRT 的最大分割误差小于九个像素,足以满足 MFO 跟踪的要求;2)在 GF 增强的 ROI 中,通过 RT 测量的 MFO 的准确性与使用多尺度血管增强滤波器的方法相当,优于局部 RT 和重新投票霍夫变换方法;3)所提出的 AF-BKS 算法优于其他测试方法,并且接近经验丰富的操作员获得的性能(AF-BKS 获得的整体协方差为 3.19,与操作员的 2.86 非常接近)。因此,它是自动估计肌束方向的有价值的工具,并且可能在肌肉骨骼超声图像的其他应用中也有价值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验