Suppr超能文献

FXR 调节肠道肿瘤干细胞增殖。

FXR Regulates Intestinal Cancer Stem Cell Proliferation.

机构信息

Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA.

Storr Liver Centre, Westmead Institute for Medical Research and Sydney Medical School, University of Sydney, Westmead NSW 2145, Australia.

出版信息

Cell. 2019 Feb 21;176(5):1098-1112.e18. doi: 10.1016/j.cell.2019.01.036.

Abstract

Increased levels of intestinal bile acids (BAs) are a risk factor for colorectal cancer (CRC). Here, we show that the convergence of dietary factors (high-fat diet) and dysregulated WNT signaling (APC mutation) alters BA profiles to drive malignant transformations in Lgr5-expressing (Lgr5) cancer stem cells and promote an adenoma-to-adenocarcinoma progression. Mechanistically, we show that BAs that antagonize intestinal farnesoid X receptor (FXR) function, including tauro-β-muricholic acid (T-βMCA) and deoxycholic acid (DCA), induce proliferation and DNA damage in Lgr5 cells. Conversely, selective activation of intestinal FXR can restrict abnormal Lgr5 cell growth and curtail CRC progression. This unexpected role for FXR in coordinating intestinal self-renewal with BA levels implicates FXR as a potential therapeutic target for CRC.

摘要

肠道胆汁酸(BAs)水平升高是结直肠癌(CRC)的一个风险因素。在这里,我们表明,饮食因素(高脂肪饮食)和 WNT 信号失调(APC 突变)的汇聚改变了 BA 谱,从而驱动 Lgr5 表达(Lgr5)癌症干细胞的恶性转化,并促进腺瘤-腺癌的进展。从机制上讲,我们表明,拮抗肠道法尼醇 X 受体(FXR)功能的 BA,包括牛磺-β-鼠胆酸(T-βMCA)和脱氧胆酸(DCA),可诱导 Lgr5 细胞增殖和 DNA 损伤。相反,肠道 FXR 的选择性激活可以限制异常 Lgr5 细胞的生长并遏制 CRC 的进展。FXR 在协调肠道自我更新与 BA 水平方面的这种意外作用暗示 FXR 可能是 CRC 的一个潜在治疗靶点。

相似文献

1
FXR Regulates Intestinal Cancer Stem Cell Proliferation.
Cell. 2019 Feb 21;176(5):1098-1112.e18. doi: 10.1016/j.cell.2019.01.036.
2
Bile acids and colon cancer: Is FXR the solution of the conundrum?
Mol Aspects Med. 2017 Aug;56:66-74. doi: 10.1016/j.mam.2017.04.002. Epub 2017 Apr 21.
3
Microbial metabolite trimethylamine-N-oxide induces intestinal carcinogenesis through inhibiting farnesoid X receptor signaling.
Cell Oncol (Dordr). 2024 Aug;47(4):1183-1199. doi: 10.1007/s13402-024-00920-2. Epub 2024 Feb 5.
5
Farnesoid X receptor deficiency in mice leads to increased intestinal epithelial cell proliferation and tumor development.
J Pharmacol Exp Ther. 2009 Feb;328(2):469-77. doi: 10.1124/jpet.108.145409. Epub 2008 Nov 3.
6
TRIB3 Interacts With β-Catenin and TCF4 to Increase Stem Cell Features of Colorectal Cancer Stem Cells and Tumorigenesis.
Gastroenterology. 2019 Feb;156(3):708-721.e15. doi: 10.1053/j.gastro.2018.10.031. Epub 2018 Oct 24.
7
An Intestinal Farnesoid X Receptor-Ceramide Signaling Axis Modulates Hepatic Gluconeogenesis in Mice.
Diabetes. 2017 Mar;66(3):613-626. doi: 10.2337/db16-0663. Epub 2016 Nov 8.
8
MET Signaling Mediates Intestinal Crypt-Villus Development, Regeneration, and Adenoma Formation and Is Promoted by Stem Cell CD44 Isoforms.
Gastroenterology. 2017 Oct;153(4):1040-1053.e4. doi: 10.1053/j.gastro.2017.07.008. Epub 2017 Jul 14.

引用本文的文献

1
Jianpi Lishi Jiedu Decoction (JLJD) Inhibit Th17 Cell Differentiation via the Jak/Stat3/RORγt Pathway in Colorectal Adenomas.
J Inflamm Res. 2025 Aug 21;18:11479-11492. doi: 10.2147/JIR.S522927. eCollection 2025.
3
Cholecystectomy-related gut microbiota dysbiosis exacerbates colorectal tumorigenesis.
Nat Commun. 2025 Aug 16;16(1):7638. doi: 10.1038/s41467-025-62956-8.
4
Bidirectional regulation of the brain-gut axis in : implications for wildlife conservation and experimentation.
Microbiol Spectr. 2025 Sep 2;13(9):e0133825. doi: 10.1128/spectrum.01338-25. Epub 2025 Jul 28.
5
Nuclear receptors in health and disease: signaling pathways, biological functions and pharmaceutical interventions.
Signal Transduct Target Ther. 2025 Jul 28;10(1):228. doi: 10.1038/s41392-025-02270-3.
8
9
Copper Metabolism-Related Genes as Biomarkers in Colon Adenoma and Cancer.
Int J Gen Med. 2025 Jun 10;18:3021-3043. doi: 10.2147/IJGM.S521512. eCollection 2025.
10
Cross-organ metabolite production and consumption in healthy and atherogenic conditions.
Cell. 2025 Aug 7;188(16):4441-4455.e16. doi: 10.1016/j.cell.2025.05.001. Epub 2025 May 27.

本文引用的文献

1
A single-cell survey of the small intestinal epithelium.
Nature. 2017 Nov 16;551(7680):333-339. doi: 10.1038/nature24489. Epub 2017 Nov 8.
2
Stem cell divisions, somatic mutations, cancer etiology, and cancer prevention.
Science. 2017 Mar 24;355(6331):1330-1334. doi: 10.1126/science.aaf9011.
3
Interplay between metabolic identities in the intestinal crypt supports stem cell function.
Nature. 2017 Mar 16;543(7645):424-427. doi: 10.1038/nature21673. Epub 2017 Mar 8.
4
Liver Cancer Checks in When Bile Acid Clocks Out.
Cancer Cell. 2016 Dec 12;30(6):827-828. doi: 10.1016/j.ccell.2016.11.012.
5
Bile Acid Analog Intercepts Liver Fibrosis.
Cell. 2016 Aug 11;166(4):789. doi: 10.1016/j.cell.2016.08.001.
6
Colorectal cancer.
Nat Rev Dis Primers. 2015 Nov 5;1:15065. doi: 10.1038/nrdp.2015.65.
7
High-fat diet enhances stemness and tumorigenicity of intestinal progenitors.
Nature. 2016 Mar 3;531(7592):53-8. doi: 10.1038/nature17173.
8
Obesity and Cancer: The Oil that Feeds the Flame.
Cell Metab. 2016 Jan 12;23(1):48-62. doi: 10.1016/j.cmet.2015.12.015.
9
Microbiota-induced obesity requires farnesoid X receptor.
Gut. 2017 Mar;66(3):429-437. doi: 10.1136/gutjnl-2015-310283. Epub 2016 Jan 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验