Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, USA.
J Chem Phys. 2019 Feb 21;150(7):074102. doi: 10.1063/1.5081715.
A new semi-atomic-orbital- based algorithm for a two-component spin-orbit (SO) equation-of-motion coupled-cluster singles and doubles (EOM-CCSD) method using mean-field SO integrals is reported. The new algorithm removes the major computational bottlenecks of a SO-EOM-CCSD calculation associated with the evaluation, storage, and processing of the H¯ elements in the similarity-transformed Hamiltonian involving four virtual orbital labels. The partial recovery of spin symmetry in the present algorithm reduces the storage requirement by an order of magnitude and the floating point operation count for the evaluation of the ladder-like term by a factor of three to four. EOM-CCSD calculations of excited states in the triiodide ion (I ) using the exact two-component Hamiltonian in combination with atomic mean-field SO integrals (X2CAMF) are reported as a validation of the implementation and also as a demonstration of the capability of the new algorithm to correlate extended virtual spaces. X2CAMF-EOM-CCSD calculations of the ground and excited states in As, Sb, and Bi are also presented and compared with the available experimental studies. An analysis based on the computed spectroscopic constants as well as the compositions of the excited-state wavefunctions strongly supports a new assignment for the lowest 2 and 0 levels in the photoelectron spectrum of Bi.
报道了一种新的基于半原子轨道的双组份自旋轨道(SO)运动方程耦合簇单双激发(EOM-CCSD)方法,该方法使用平均场 SO 积分。新算法消除了与相似变换哈密顿量中 H¯元素的评估、存储和处理相关的 SO-EOM-CCSD 计算的主要计算瓶颈,该哈密顿量涉及四个虚拟轨道标签。本算法中自旋对称性的部分恢复将梯式项评估的存储需求降低了一个数量级,浮点运算次数降低了三到四倍。使用精确的双组份哈密顿量与原子平均场 SO 积分(X2CAMF),报告了三碘化物离子(I )激发态的 EOM-CCSD 计算,以验证实现并展示新算法关联扩展虚拟空间的能力。还报告了 As、Sb 和 Bi 基态和激发态的 X2CAMF-EOM-CCSD 计算,并与现有实验研究进行了比较。基于计算的光谱常数以及激发态波函数的组成的分析强烈支持对 Bi 光电谱中最低 2 和 0 能级的新分配。