Department of Materials Science and Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, 60208, USA.
Swiss Light Source, Paul Scherrer Institut, 5232, Villigen, Switzerland.
Nat Commun. 2019 Feb 22;10(1):904. doi: 10.1038/s41467-019-08763-4.
Additive manufacturing of high-entropy alloys combines the mechanical properties of this novel family of alloys with the geometrical freedom and complexity required by modern designs. Here, a non-beam approach to additive manufacturing of high-entropy alloys is developed based on 3D extrusion of inks containing a blend of oxide nanopowders (CoO + CrO + FeO + NiO), followed by co-reduction to metals, inter-diffusion and sintering to near-full density CoCrFeNi in H. A complex phase evolution path is observed by in-situ X-ray diffraction in extruded filaments when the oxide phases undergo reduction and the resulting metals inter-diffuse, ultimately forming face-centered-cubic equiatomic CoCrFeNi alloy. Linked to the phase evolution is a complex structural evolution, from loosely packed oxide particles in the green body to fully-annealed, metallic CoCrFeNi with 99.6 ± 0.1% relative density. CoCrFeNi micro-lattices are created with strut diameters as low as 100 μm and excellent mechanical properties at ambient and cryogenic temperatures.
增材制造的高熵合金将这种新型合金系列的机械性能与现代设计所需的几何自由度和复杂性相结合。在这里,我们开发了一种基于包含氧化物纳米粉末(CoO+CrO+FeO+NiO)混合物的油墨的 3D 挤压的非束流增材制造高熵合金的方法,然后进行共还原为金属,互扩散和烧结至接近完全致密的 CoCrFeNi 在 H 中。在挤出丝中进行原位 X 射线衍射时,观察到复杂的相演化路径,当氧化物相经历还原并且所得金属互扩散时,最终形成面心立方等原子 CoCrFeNi 合金。与相演化相关的是复杂的结构演化,从绿色体中松散堆积的氧化物颗粒到完全退火的、金属 CoCrFeNi,相对密度为 99.6±0.1%。可以创建具有低至 100μm 支柱直径的 CoCrFeNi 微晶格,并具有在环境和低温下的优异机械性能。