Surjadi James U, Wang Liqiang, Qu Shuo, Aymon Bastien F G, Ding Junhao, Zhou Xin, Fan Rong, Yang Hui, Zhao Qi, Song Xu, Lu Yang
Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China.
Hong Kong Institute for Advanced Study, City University of Hong Kong, Kowloon, Hong Kong SAR, China.
Sci Adv. 2025 May 9;11(19):eadt0589. doi: 10.1126/sciadv.adt0589. Epub 2025 May 7.
Mechanical metamaterials can unlock extreme properties by leveraging lightweight structural design principles and unique deformation mechanisms. However, research has predominantly focused on their quasi-static characteristics, leaving their behavior under extreme dynamic conditions, especially at length scales relevant to practical applications largely unexplored. Here, we present a strategy to achieve extreme impact mitigation at the macroscale by combining shell-based microarchitecture with an additively manufactured medium-entropy alloy (MEA) featuring low stacking fault energy (SFE). Notably, the shell-based architecture amplifies the effective dynamic stress within the metamaterial compared to truss-based morphologies, leading to the earlier activation of multiscale toughening mechanisms in the alloy. The low SFE of the MEA enables the evolution of a diverse array of defect types, thereby prolonging strain hardening behavior across seven orders of magnitude in strain rate. These fundamental insights could establish the groundwork for developing scalable, lightweight, impact-resistant metamaterials for structural and defense applications.
机械超材料可以通过利用轻质结构设计原则和独特的变形机制来实现极端性能。然而,研究主要集中在它们的准静态特性上,而它们在极端动态条件下的行为,特别是在与实际应用相关的长度尺度下,在很大程度上尚未得到探索。在这里,我们提出了一种策略,通过将基于壳的微结构与具有低堆垛层错能(SFE)的增材制造中熵合金(MEA)相结合,在宏观尺度上实现极端的冲击缓解。值得注意的是,与基于桁架的形态相比,基于壳的结构放大了超材料内的有效动态应力,导致合金中多尺度增韧机制的更早激活。MEA的低SFE能够使多种缺陷类型演化,从而在七个数量级的应变速率范围内延长应变硬化行为。这些基本见解可为开发用于结构和国防应用的可扩展、轻质、抗冲击超材料奠定基础。