Oller Ramon, Gómez Melis Guadalupe
Departament d'Economia i Empresa, Universitat de Vic-Universitat Central de Catalunya, Sagrada Família 7, 08500 Vic, Spain.
Departament d'Estadística i Investigació Operativa, Universitat Politècnica de Catalunya, Jordi Girona 1-3, 08034 Barcelona, Spain.
Biostatistics. 2020 Oct 1;21(4):727-742. doi: 10.1093/biostatistics/kxz002.
Many biomedical studies focus on the association between a longitudinal measurement and a time-to-event outcome while quantifying this association by means of a longitudinal-survival joint model. In this article we propose using the $LLR$ test - a longitudinal extension of the log-rank test statistic given by Peto and Peto (1972) - to provide evidence of a plausible association between a time-to-event outcome (right- or interval-censored) and a time-dependent covariate. As joint model methods are complex and hard to interpret, it is wise to conduct a preliminary test such as $LLR$ for checking the association between both processes. The $LLR$ statistic can be expressed in the form of a weighted difference of hazards, yielding a broad class of weighted log-rank test statistics known as $LWLR$, which allow a specific emphasis along the time axis of the effects of the time-dependent covariate on the survival. The asymptotic distribution of $LLR$ is derived by means of a permutation approach under the assumption that the censoring mechanism is independent of the survival time and the longitudinal covariate. A simulation study is conducted to evaluate the performance of the test statistics $LLR$ and $LWLR$, showing that the empirical size is close to the nominal significance level and that the power of the test depends on the association between the covariates and the survival time. A data set together with a toy example are used to illustrate the $LLR$ test. The data set explores the study Epidemiology of Diabetes Interventions and Complications (Sparling and others, 2006) which includes interval-censored data. A software implementation of our method is available on github (https://github.com/RamonOller/LWLRtest).
许多生物医学研究聚焦于纵向测量与事件发生时间结局之间的关联,同时通过纵向生存联合模型对这种关联进行量化。在本文中,我们提议使用LLR检验(Peto和Peto于1972年给出的对数秩检验统计量的纵向扩展),以提供事件发生时间结局(右删失或区间删失)与时间相依协变量之间存在合理关联的证据。由于联合模型方法复杂且难以解释,明智的做法是进行诸如LLR这样的初步检验,以检查两个过程之间的关联。LLR统计量可以表示为风险加权差异的形式,从而产生一类广泛的加权对数秩检验统计量,称为LWLR,它允许沿着时间轴特别强调时间相依协变量对生存的影响。在删失机制与生存时间和纵向协变量无关的假设下,通过置换方法推导LLR的渐近分布。进行了一项模拟研究来评估检验统计量LLR和LWLR的性能,结果表明经验显著性水平接近名义显著性水平,并且检验功效取决于协变量与生存时间之间的关联。使用一个数据集和一个示例来说明LLR检验。该数据集探索了糖尿病干预与并发症流行病学研究(Sparling等人,2006年),其中包括区间删失数据。我们方法的软件实现可在github上获取(https://github.com/RamonOller/LWLRtest)。