Division of Biological Sciences, University of California, San Diego, CA, United States.
Division of Biological Sciences, University of California, San Diego, CA, United States.
Curr Top Dev Biol. 2019;132:395-416. doi: 10.1016/bs.ctdb.2018.12.009. Epub 2019 Jan 2.
Heart formation involves a complex series of tissue rearrangements, during which regions of the developing organ expand, bend, converge, and protrude in order to create the specific shapes of important cardiac components. Much of this morphogenesis takes place while cardiac function is underway, with blood flowing through the rapidly contracting chambers. Fluid forces are therefore likely to influence the regulation of cardiac morphogenesis, but it is not yet clear how these biomechanical cues direct specific cellular behaviors. In recent years, the optical accessibility and genetic amenability of zebrafish embryos have facilitated unique opportunities to integrate the analysis of flow parameters with the molecular and cellular dynamics underlying cardiogenesis. Consequently, we are making progress toward a comprehensive view of the biomechanical regulation of cardiac chamber emergence, atrioventricular canal differentiation, and ventricular trabeculation. In this review, we highlight a series of studies in zebrafish that have provided new insight into how cardiac function can shape cardiac morphology, with a particular focus on how hemodynamics can impact cardiac cell behavior. Over the long-term, this knowledge will undoubtedly guide our consideration of the potential causes of congenital heart disease.
心脏的形成涉及一系列复杂的组织重排过程,在此过程中,发育器官的区域会扩张、弯曲、汇聚和突出,从而形成重要心脏结构的特定形状。在心脏功能进行的同时,大部分形态发生发生,血液流经快速收缩的腔室。因此,流体力可能会影响心脏形态发生的调节,但目前尚不清楚这些生物力学线索如何指导特定的细胞行为。近年来,斑马鱼胚胎的光学可及性和遗传适用性为整合流动参数分析与心脏发生的分子和细胞动力学提供了独特的机会。因此,我们正在朝着全面了解心脏腔室出现、房室管分化和心室小梁化的生物力学调节方向取得进展。在这篇综述中,我们强调了一系列在斑马鱼中进行的研究,这些研究提供了新的见解,了解心脏功能如何塑造心脏形态,特别是血流动力学如何影响心脏细胞行为。从长远来看,这方面的知识无疑将指导我们考虑先天性心脏病的潜在原因。