Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison WI 53706, USA.
Institute for Regenerative Medicine and Epigenetics Program, Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
Mol Cell. 2019 Apr 4;74(1):185-195.e4. doi: 10.1016/j.molcel.2019.01.014. Epub 2019 Feb 20.
Reprogramming cell fate during the first stages of embryogenesis requires that transcriptional activators gain access to the genome and remodel the zygotic transcriptome. Nonetheless, it is not clear whether the continued activity of these pioneering factors is required throughout zygotic genome activation or whether they are only required early to establish cis-regulatory regions. To address this question, we developed an optogenetic strategy to rapidly and reversibly inactivate the master regulator of genome activation in Drosophila, Zelda. Using this strategy, we demonstrate that continued Zelda activity is required throughout genome activation. We show that Zelda binds DNA in the context of nucleosomes and suggest that this allows Zelda to occupy the genome despite the rapid division cycles in the early embryo. These data identify a powerful strategy to inactivate transcription factor function during development and suggest that reprogramming in the embryo may require specific, continuous pioneering functions to activate the genome.
在胚胎发生的早期阶段重编程细胞命运需要转录激活因子获得基因组的访问权限并重塑合子转录组。尽管如此,目前尚不清楚这些开拓性因子的持续活性是否在整个合子基因组激活过程中都需要,或者它们是否仅需要早期来建立顺式调控区域。为了解决这个问题,我们开发了一种光遗传学策略来快速可逆地失活果蝇中基因组激活的主调控因子 Zelda。使用这种策略,我们证明了在整个基因组激活过程中持续的 Zelda 活性是必需的。我们表明 Zelda 在核小体的背景下结合 DNA,并表明这允许 Zelda 占据基因组,尽管早期胚胎的快速分裂周期。这些数据确定了一种在发育过程中失活转录因子功能的强大策略,并表明胚胎中的重编程可能需要特定的、持续的开拓性功能来激活基因组。