Suppr超能文献

神经外科学实践中的方差减少:大数据时代分析驱动决策支持的案例。

Variance Reduction in Neurosurgical Practice: The Case for Analytics-Driven Decision Support in the Era of Big Data.

机构信息

Computational Neurosurgery Outcomes Center, Department of Neurological Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.

Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, Texas, USA.

出版信息

World Neurosurg. 2019 Jun;126:e190-e195. doi: 10.1016/j.wneu.2019.01.292. Epub 2019 Feb 22.

Abstract

OBJECTIVE

Variance between providers in neurosurgery can lead to inefficiencies and poor patient outcomes. Evidence-based guidelines (EBGs) have been developed; however, they have not been well implemented into the clinician workflow. Therefore, clinicians have been left to make decisions with incomplete information. Equally underused are the electronic health records (EHRs), which house enormous amounts of health data, but the power of that "big data" has failed to be capitalized on.

METHODS

Early attempts at EBGs were rigid and nonadaptive; however, with the current advances in data informatics and machine learning algorithms, it is now possible to integrate "big data" and rapid data processing into clinical decision support tools. We have presented an overview of the background of EHRs and EBGs in neurosurgery and explored the possibility of integrating them to reduce unwanted variance.

RESULTS

As we strive toward variance reduction in healthcare, the integration of "big data" and EBGs for decision-making will be key. We have proposed that EHRs are an ideal platform for integrating EBGs into the clinician workflow and have presented as an example of a successful early generation model, Neurocore. With this approach, it will be possible to build EBGs into the EHR software, to continuously update and optimize EBGs according to the flow of patient data into the EHR, and to present data-driven clinical decision support at the point of care.

CONCLUSIONS

Variance reduction in neurosurgery through the integration of evidence-based decision support in EHRs will lead to improved patient safety, a reduction in medical errors, maximization of the use of the available data, and enhanced decision-making power for clinicians.

摘要

目的

神经外科医生之间的差异可能导致效率低下和患者预后不良。已经制定了基于证据的指南(EBG);然而,它们并没有很好地融入临床医生的工作流程。因此,临床医生只能在信息不完整的情况下做出决策。同样未被充分利用的是电子健康记录(EHR),它存储了大量的健康数据,但“大数据”的力量尚未被充分利用。

方法

早期的 EBG 尝试是僵化和非适应性的;然而,随着数据信息学和机器学习算法的当前进展,现在有可能将“大数据”和快速数据处理集成到临床决策支持工具中。我们介绍了神经外科中 EHR 和 EBG 的背景概述,并探讨了整合它们以减少不必要的差异的可能性。

结果

在我们努力减少医疗保健中的差异时,整合“大数据”和 EBG 进行决策将是关键。我们提出 EHR 是将 EBG 集成到临床医生工作流程中的理想平台,并提出了一个成功的早期模型 Neurocore 的示例。通过这种方法,将有可能将 EBG 构建到 EHR 软件中,根据患者数据流入 EHR 的流程不断更新和优化 EBG,并在护理点提供数据驱动的临床决策支持。

结论

通过将基于证据的决策支持集成到 EHR 中减少神经外科的差异将提高患者安全性,减少医疗错误,最大限度地利用现有数据,并增强临床医生的决策能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验