Machine Learning Group, UiT the Arctic University of Norway, Norway (1).
Machine Learning Group, UiT the Arctic University of Norway, Norway (1).
Neural Netw. 2019 May;113:91-101. doi: 10.1016/j.neunet.2019.01.015. Epub 2019 Feb 8.
A promising direction in deep learning research consists in learning representations and simultaneously discovering cluster structure in unlabeled data by optimizing a discriminative loss function. As opposed to supervised deep learning, this line of research is in its infancy, and how to design and optimize suitable loss functions to train deep neural networks for clustering is still an open question. Our contribution to this emerging field is a new deep clustering network that leverages the discriminative power of information-theoretic divergence measures, which have been shown to be effective in traditional clustering. We propose a novel loss function that incorporates geometric regularization constraints, thus avoiding degenerate structures of the resulting clustering partition. Experiments on synthetic benchmarks and real datasets show that the proposed network achieves competitive performance with respect to other state-of-the-art methods, scales well to large datasets, and does not require pre-training steps.
深度学习研究的一个很有前景的方向是通过优化判别损失函数来学习表示,并同时在无标签数据中发现聚类结构。与监督深度学习不同,这一研究方向还处于起步阶段,如何设计和优化合适的损失函数来训练用于聚类的深度神经网络仍然是一个悬而未决的问题。我们在这个新兴领域的贡献是一个新的深度聚类网络,该网络利用了信息论散度度量的判别能力,这些度量在传统聚类中已被证明是有效的。我们提出了一种新的损失函数,该函数包含了几何正则化约束,从而避免了聚类划分的退化结构。在合成基准和真实数据集上的实验表明,与其他最先进的方法相比,所提出的网络具有竞争力,能够很好地扩展到大数据集,并且不需要预训练步骤。