Suppr超能文献

基于新型深度神经网络的模式场分类架构。

Novel deep neural network based pattern field classification architectures.

机构信息

Department of Electrical and Electronic Engineering, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China; Alibaba-Zhejiang University Joint Institute of Frontier Technologies, Hangzhou, China.

Department of Electrical and Electronic Engineering, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China.

出版信息

Neural Netw. 2020 Jul;127:82-95. doi: 10.1016/j.neunet.2020.03.011. Epub 2020 Mar 14.

Abstract

Field classification is a new extension of traditional classification frameworks that attempts to utilize consistent information from a group of samples (termed fields). By forgoing the independent identically distributed (i.i.d.) assumption, field classification can achieve remarkably improved accuracy compared to traditional classification methods. Most studies of field classification have been conducted on traditional machine learning methods. In this paper, we propose integration with a Bayesian framework, for the first time, in order to extend field classification to deep learning and propose two novel deep neural network architectures: the Field Deep Perceptron (FDP) and the Field Deep Convolutional Neural Network (FDCNN). Specifically, we exploit a deep perceptron structure, typically a 6-layer structure, where the first 3 layers remove (learn) a 'style' from a group of samples to map them into a more discriminative space and the last 3 layers are trained to perform classification. For the FDCNN, we modify the AlexNet framework by adding style transformation layers within the hidden layers. We derive a novel learning scheme from a Bayesian framework and design a novel and efficient learning algorithm with guaranteed convergence for training the deep networks. The whole framework is interpreted with visualization features showing that the field deep neural network can better learn the style of a group of samples. Our developed models are also able to achieve transfer learning and learn transformations for newly introduced fields. We conduct extensive comparative experiments on benchmark data (including face, speech, and handwriting data) to validate our learning approach. Experimental results demonstrate that our proposed deep frameworks achieve significant improvements over other state-of-the-art algorithms, attaining new benchmark performance.

摘要

领域分类是传统分类框架的一个新扩展,它试图利用一组样本(称为领域)中的一致信息。通过放弃独立同分布(i.i.d.)假设,领域分类可以比传统分类方法实现显著提高的准确性。大多数领域分类的研究都是基于传统机器学习方法进行的。在本文中,我们首次提出将其与贝叶斯框架集成,以将领域分类扩展到深度学习,并提出了两种新的深度神经网络架构:领域深度感知机(FDP)和领域深度卷积神经网络(FDCNN)。具体来说,我们利用深度感知机结构,通常是 6 层结构,其中前 3 层从一组样本中提取(学习)一种“风格”,将它们映射到更具判别力的空间,后 3 层用于进行分类。对于 FDCNN,我们通过在隐藏层中添加风格转换层来修改 AlexNet 框架。我们从贝叶斯框架中推导出一种新的学习方案,并设计了一种新颖而有效的学习算法,该算法保证了深度网络的收敛性。整个框架通过可视化特征进行解释,表明领域深度神经网络可以更好地学习一组样本的风格。我们开发的模型还能够实现迁移学习并学习新引入领域的转换。我们在基准数据(包括人脸、语音和手写数据)上进行了广泛的对比实验,以验证我们的学习方法。实验结果表明,我们提出的深度框架在其他最先进的算法上取得了显著的改进,达到了新的基准性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验