Levartovsky Yehonatan, Chakraborty Arup, Kunnikuruvan Sooraj, Maiti Sandipan, Grinblat Judith, Talianker Michael, Major Dan Thomas, Aurbach Doron
Department of Chemistry and Institute for Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel.
ACS Appl Mater Interfaces. 2021 Jul 28;13(29):34145-34156. doi: 10.1021/acsami.1c06839. Epub 2021 Jul 14.
Ni-rich layered oxide LiNiCoMnO (1 - - > 0.5) materials are favorable cathode materials in advanced Li-ion batteries for electromobility applications because of their high initial discharge capacity. However, they suffer from poor cycling stability because of the formation of cracks in their particles during operation. Here, we present improved structural stability, electrochemical performance, and thermal durability of LiNiCoMnO(NCM85). The Nb-doped cathode material, Li(NiCoMn)NbO, has enhanced cycling stability at different temperatures, outstanding capacity retention, improved performance at high discharge rates, and a better thermal stability compared to the undoped cathode material. The high electrochemical performance of the doped material is directly related to the structural stability of the cathode particles. We further propose that Nb-doping in NCM85 improves material stability because of partial reduction of the amount of Jahn-Teller active Ni ions and formation of strong bonds between the dopant and the oxygen ions, based on density functional theory calculations. Structural studies of the cycled cathodes reveal that doping with niobium suppresses the formation of cracks during cycling, which are abundant in the undoped cycled material particles. The Nb-doped NCM85 cathode material also displayed superior thermal characteristics. The coherence between the improved electrochemical, structural, and thermal properties of the doped material is discussed and emphasized.
富镍层状氧化物LiNiCoMnO(1 - - >0.5)材料因其高初始放电容量,是用于电动移动应用的先进锂离子电池中理想的正极材料。然而,由于在运行过程中其颗粒中形成裂纹,它们的循环稳定性较差。在此,我们展示了LiNiCoMnO(NCM85)改善的结构稳定性、电化学性能和热耐久性。与未掺杂的正极材料相比,Nb掺杂的正极材料Li(NiCoMn)NbO在不同温度下具有增强的循环稳定性、出色的容量保持率、在高放电率下的改进性能以及更好的热稳定性。掺杂材料的高电化学性能与正极颗粒的结构稳定性直接相关。基于密度泛函理论计算,我们进一步提出,NCM85中的Nb掺杂提高了材料稳定性,这是由于Jahn-Teller活性Ni离子数量的部分减少以及掺杂剂与氧离子之间形成了强键。对循环后的正极进行的结构研究表明,用铌掺杂可抑制循环过程中裂纹的形成,而这些裂纹在未掺杂的循环材料颗粒中大量存在。Nb掺杂的NCM85正极材料还表现出优异的热特性。本文讨论并强调了掺杂材料在电化学、结构和热性能方面改善之间的相关性。