Suppr超能文献

各种形态的一维及表面功能化SnO纳米结构的亚波长波导特性。

Sub-wavelength waveguide properties of 1D and surface-functionalized SnO nanostructures of various morphologies.

作者信息

Bonu Venkataramana, Sahu Binaya Kumar, Das Arindam, Amirthapandian Sankarakumar, Dhara Sandip, Barshilia Harish C

机构信息

Surface and Nanoscience Division, Indira Gandhi Center for Atomic Research, Homi Bhabha National Institute, Kalpakkam 603102, India.

Surface Engineering Division, CSIR-National Aerospace Laboratories, Bangalore 560017, India.

出版信息

Beilstein J Nanotechnol. 2019 Feb 7;10:379-388. doi: 10.3762/bjnano.10.37. eCollection 2019.

Abstract

One-dimensional (1D) SnO sub-wavelength waveguides are a critical contribution to advanced optoelectronics. Further understanding of the surface defects and role of morphology in 1D SnO nanowires can help to better utilize these nanostructures more efficiently. For this purpose, three different nanowires (NWs), namely belts, cylindrical- and square-shaped structures were grown using SnO quantum dots as a precursor material. The growth process of these NWs is discussed. The nanobelts were observed to grow up to 3 mm in length. Morphological and structural studies of the nanostructures were also carried out. All NWs showed waveguide behavior with visible photoluminescence (PL) upon excitation with a 325 nm laser. This behavior was also demonstrated in tapered and surface-functionalized SnO NWs. While the tapered waveguide can allow for easy focusing of light, the simple surface chemistry offers selective light propagation by tuning the luminescence. Defect-related PL in NWs is studied using temperature-dependent measurements and a band diagram is proposed.

摘要

一维(1D)SnO亚波长波导对先进光电子学有着至关重要的贡献。进一步了解一维SnO纳米线中的表面缺陷和形态作用有助于更高效地更好利用这些纳米结构。为此,使用SnO量子点作为前驱体材料生长了三种不同的纳米线(NWs),即带形、圆柱形和方形结构。讨论了这些纳米线的生长过程。观察到纳米带的长度可生长至3毫米。还对纳米结构进行了形态和结构研究。在用325纳米激光激发时,所有纳米线均表现出具有可见光致发光(PL)的波导行为。这种行为在锥形和表面功能化的SnO纳米线中也得到了证实。虽然锥形波导能够使光易于聚焦,但简单的表面化学通过调节发光实现了选择性光传播。利用与温度相关的测量研究了纳米线中与缺陷相关的光致发光,并提出了能带图。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2856/6369987/1edf966102b1/Beilstein_J_Nanotechnol-10-379-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验