Campu Andreea, Susu Laurentiu, Orzan Filip, Maniu Dana, Craciun Ana Maria, Vulpoi Adriana, Roiban Lucian, Focsan Monica, Astilean Simion
Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, Cluj-Napoca, Romania.
Biomolecular Physics Department, Faculty of Physics, Babes-Bolyai University, Cluj-Napoca, Romania.
Front Chem. 2019 Feb 8;7:55. doi: 10.3389/fchem.2019.00055. eCollection 2019.
In this work, we design new plasmonic paper-based nanoplatforms with interesting capabilities in terms of sensitivity, efficiency, and reproducibility for promoting multimodal biodetection via Localized Surface Plasmon Resonance (LSPR), Surface Enhanced Raman Spectroscopy (SERS), and Metal Enhanced Fluorescence (MEF). To succeed, we exploit the unique optical properties of gold nanobipyramids (AuBPs) deposited onto the cellulose fibers via plasmonic calligraphy using a commercial pen. The first step of the biosensing protocol was to precisely graft the previously chemically-formed p-aminothiophenol@Biotin system, as active recognition element for target streptavidin detection, onto the plasmonic nanoplatform. The specific capture of the target protein was successfully demonstrated using three complementary sensing techniques. As a result, while the LSPR based sensing capabilities of the nanoplatform were proved by successive 13-18 nm red shifts of the longitudinal LSPR associated with the change of the surface RI after each step. By employing the ultrasensitive SERS technique, we were able to indirectly confirm the molecular identification of the biotin-streptavidin interaction due to the protein fingerprint bands assigned to amide I, amide III, and Trp vibrations. Additionally, the formed biotin-streptavidin complex acted as a spacer to ensure an optimal distance between the AuBP surface and the Alexa 680 fluorophore for achieving a 2-fold fluorescence emission enhancement of streptavidin@Alexa 680 on the biotinylated nanoplatform compared to the same complex on bare paper (near the plasmonic lines), implementing thus a novel MEF sensing nanoplatform. Finally, by integrating multiple LSPR, SERS, and MEF nanosensors with multiplex capability into a single flexible and portable plasmonic nanoplatform, we could overcome important limits in the field of portable point-of-care diagnostics.
在这项工作中,我们设计了新型的基于纸的等离子体纳米平台,该平台在灵敏度、效率和可重复性方面具有有趣的特性,可通过局域表面等离子体共振(LSPR)、表面增强拉曼光谱(SERS)和金属增强荧光(MEF)促进多模态生物检测。为了取得成功,我们利用商业笔通过等离子体书法将金纳米双锥体(AuBP)沉积在纤维素纤维上,以利用其独特的光学特性。生物传感协议的第一步是将先前化学形成的对氨基硫酚@生物素系统(作为检测目标链霉亲和素的活性识别元件)精确接枝到等离子体纳米平台上。使用三种互补传感技术成功证明了目标蛋白质的特异性捕获。结果,虽然纳米平台基于LSPR的传感能力通过与每一步后表面折射率变化相关的纵向LSPR连续13 - 18 nm红移得到证明。通过采用超灵敏的SERS技术,由于归属于酰胺I、酰胺III和色氨酸振动的蛋白质指纹带,我们能够间接确认生物素 - 链霉亲和素相互作用的分子识别。此外,形成的生物素 - 链霉亲和素复合物充当间隔物,以确保AuBP表面与Alexa 680荧光团之间的最佳距离,从而使生物素化纳米平台上的链霉亲和素@Alexa 680荧光发射增强2倍,而在裸纸上(靠近等离子体线)的相同复合物则不然,从而实现了一种新型的MEF传感纳米平台。最后,通过将具有多重能力的多个LSPR、SERS和MEF纳米传感器集成到单个灵活便携的等离子体纳米平台中,我们可以克服便携式即时诊断领域的重要限制。