Department of Biomedical Engineering, College of Medicine , Kyung Hee University , Seoul 02447 , Republic of Korea.
Department of Electronic Engineering , Kyung Hee University , Gyeonggi-do 17104 , Republic of Korea.
ACS Nano. 2018 Jul 24;12(7):7100-7108. doi: 10.1021/acsnano.8b02917. Epub 2018 Jun 25.
We report the development of a surface-enhanced Raman spectroscopy sensor chip by decorating gold nanoparticles (AuNPs) on ZnO nanorod (ZnO NR) arrays vertically grown on cellulose paper (C). We show that these chips can enhance the Raman signal by 1.25 × 10 with an excellent reproducibility of <6%. We show that we can measure trace amounts of human amniotic fluids of patients with subclinical intra-amniotic infection (IAI) and preterm delivery (PTD) using the chip in combination with a multivariate statistics-derived machine-learning-trained bioclassification method. We can detect the presence of prenatal diseases and identify the types of diseases from amniotic fluids with >92% clinical sensitivity and specificity. Our technology has the potential to be used for the early detection of prenatal diseases and can be adapted for point-of-care applications.
我们报告了一种表面增强拉曼光谱传感器芯片的开发,方法是将金纳米粒子(AuNPs)修饰在垂直生长在纤维素纸上的 ZnO 纳米棒(ZnO NR)阵列上。我们表明,这些芯片可以将拉曼信号增强 1.25×10,具有<6%的优异重现性。我们表明,我们可以使用该芯片结合多元统计衍生的机器学习训练的生物分类方法来测量亚临床宫内感染(IAI)和早产(PTD)患者的微量人羊水。我们可以从羊水中检测到产前疾病的存在,并通过>92%的临床灵敏度和特异性识别疾病类型。我们的技术有可能用于早期发现产前疾病,并可以适应即时护理应用。