Suppr超能文献

一氧化氮作为背根神经节中神经元和卫星神经胶质细胞之间的信使。

Nitric oxide as a messenger between neurons and satellite glial cells in dorsal root ganglia.

机构信息

Laboratory of Experimental Surgery, Hadassah-Hebrew University Medical Center, Jerusalem, Israel.

Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.

出版信息

Glia. 2019 Jul;67(7):1296-1307. doi: 10.1002/glia.23603. Epub 2019 Feb 23.

Abstract

Abnormal neuronal activity in sensory ganglia contributes to chronic pain. There is evidence that signals can spread between cells in these ganglia, which may contribute to this activity. Satellite glial cells (SGCs) in sensory ganglia undergo activation following peripheral injury and participate in cellular communication via gap junctions and chemical signaling. Nitric oxide (NO) is released from neurons in dorsal root ganglia (DRG) and induces cyclic GMP (cGMP) production in SCGs, but its role in SGC activation and neuronal excitability has not been explored. It was previously reported that induction of intestinal inflammation with dinitrobenzoate sulfonate (DNBS) increased gap junctional communications among SGCs, which contributed to neuronal excitability and pain. Here we show that DNBS induced SGC activation in mouse DRG, as assayed by glial fibrillary acidic protein upregulation. DNBS also upregulated cGMP level in SGCs, consistent with NO production. In vitro studies on intact ganglia from DNBS-treated mice showed that blocking NO synthesis inhibited both SGCs activation and cGMP upregulation, indicating an ongoing NO production. Application of NO donor in vitro induced SGC activation, augmented gap junctional communications, and raised neuronal excitability, as assessed by electrical recordings. The cGMP analog 8-Br-cGMP mimicked these actions, confirming the role of the NO-cGMP pathway in intraganglionic communications. NO also augmented Ca waves propagation in DRG cultures. It is proposed that NO synthesis in DRG neurons increases after peripheral inflammation and that NO induces SGC activation, which in turn contributes to neuronal hyperexcitability. Thus, NO plays a major role in neuron-SGC communication.

摘要

感觉神经元异常活动导致慢性疼痛。有证据表明,这些神经节中的信号可以在细胞之间传播,这可能是导致这种活动的原因之一。感觉神经节中的卫星神经胶质细胞 (SGC) 在周围损伤后被激活,并通过缝隙连接和化学信号参与细胞通讯。一氧化氮 (NO) 从背根神经节 (DRG) 的神经元中释放出来,并诱导 SGC 中环状 GMP (cGMP) 的产生,但它在 SGC 激活和神经元兴奋性中的作用尚未被探索。先前的研究表明,用二硝基苯磺酸 (DNBS) 诱导肠道炎症会增加 SGC 之间的缝隙连接通讯,这有助于神经元兴奋性和疼痛。在这里,我们表明,DNBS 通过上调神经胶质纤维酸性蛋白来诱导小鼠 DRG 中的 SGC 激活。DNBS 还上调了 SGC 中的 cGMP 水平,与 NO 产生一致。对来自 DNBS 处理小鼠的完整神经节的体外研究表明,阻断 NO 合成抑制了 SGC 的激活和 cGMP 的上调,表明持续的 NO 产生。体外应用 NO 供体诱导 SGC 激活,增强缝隙连接通讯,并提高神经元兴奋性,如电记录所示。cGMP 类似物 8-Br-cGMP 模拟了这些作用,证实了 NO-cGMP 途径在神经节内通讯中的作用。NO 还增强了 DRG 培养物中 Ca 波的传播。提出的假设是,外周炎症后 DRG 神经元中的 NO 合成增加,并且 NO 诱导 SGC 激活,这反过来又有助于神经元过度兴奋。因此,NO 在神经元-SGC 通讯中起主要作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验