Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
University of Chinese Academy of Sciences, Beijing, 100049, China.
Angew Chem Int Ed Engl. 2019 Apr 16;58(17):5572-5576. doi: 10.1002/anie.201813771. Epub 2019 Mar 21.
Multiple-enzyme-involving cascade reactions that yield bioenergy are necessary in natural oxidative phosphorylation. However, in vitro applications are hampered by the sensitivity of catalytic activity to environmental adaptation. Herein, we explore nanozyme-catalyzed cascade reactions in an assembled hybrid architecture for mitochondria-mimicking oxidative phosphorylation. Hollow silica microspheres containing trapped gold nanoparticles were synthesized to promote two enzyme-like catalytic reactions that transform glucose into gluconic acid in the presence of oxygen. The resulting transmembrane proton gradient drives natural ATP synthase reconstituted on the surface to convert ADP and inorganic phosphate into ATP. The assembled architecture possesses high activity for oxidative phosphorylation, comparable to that of natural mitochondria. This study provides a new natural-artificial hybrid prototype for exploring bioenergy supply systems and holds great promise for ATP-powered bioapplications.
涉及生物能量产生的多酶级联反应在自然氧化磷酸化中是必需的。然而,在体外应用中受到催化活性对环境适应敏感性的阻碍。在此,我们探索了在组装的混合结构中纳米酶催化级联反应,以模拟线粒体的氧化磷酸化。合成了含有捕获金纳米颗粒的空心硅微球,以促进两种酶样催化反应,即在氧气存在下将葡萄糖转化为葡萄糖酸。由此产生的跨膜质子梯度驱动在表面上重新组装的天然 ATP 合酶将 ADP 和无机磷酸转化为 ATP。组装的结构具有高氧化磷酸化活性,可与天然线粒体相媲美。这项研究为探索生物能量供应系统提供了一种新的天然-人工混合原型,并为基于 ATP 的生物应用带来了巨大的前景。