文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于生物金属有机框架的抗癌药物递送系统

BioMOF-Based Anti-Cancer Drug Delivery Systems.

作者信息

Elmehrath Sandy, Nguyen Ha L, Karam Sherif M, Amin Amr, Greish Yaser E

机构信息

Department of Chemistry, United Arab Emirates University, Al-Ain 15551, United Arab Emirates.

Department of Chemistry University of California-Berkeley, Kavli Energy Nanoscience Institute at UC Berkeley, and Berkeley Global Science Institute, Berkeley, CA 94720, USA.

出版信息

Nanomaterials (Basel). 2023 Mar 6;13(5):953. doi: 10.3390/nano13050953.


DOI:10.3390/nano13050953
PMID:36903831
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10005089/
Abstract

A variety of nanomaterials have been developed specifically for biomedical applications, such as drug delivery in cancer treatment. These materials involve both synthetic and natural nanoparticles and nanofibers of varying dimensions. The efficacy of a drug delivery system (DDS) depends on its biocompatibility, intrinsic high surface area, high interconnected porosity, and chemical functionality. Recent advances in metal-organic framework (MOF) nanostructures have led to the achievement of these desirable features. MOFs consist of metal ions and organic linkers that are assembled in different geometries and can be produced in 0, 1, 2, or 3 dimensions. The defining features of MOFs are their outstanding surface area, interconnected porosity, and variable chemical functionality, which enable an endless range of modalities for loading drugs into their hierarchical structures. MOFs, coupled with biocompatibility requisites, are now regarded as highly successful DDSs for the treatment of diverse diseases. This review aims to present the development and applications of DDSs based on chemically-functionalized MOF nanostructures in the context of cancer treatment. A concise overview of the structure, synthesis, and mode of action of MOF-DDS is provided.

摘要

人们已经开发出了多种专门用于生物医学应用的纳米材料,比如癌症治疗中的药物递送。这些材料包括各种尺寸的合成和天然纳米颗粒以及纳米纤维。药物递送系统(DDS)的功效取决于其生物相容性、固有的高比表面积、高连通孔隙率和化学功能。金属有机框架(MOF)纳米结构的最新进展已实现了这些理想特性。MOF由金属离子和有机连接体组成,它们以不同的几何形状组装,并且可以制成零维、一维、二维或三维结构。MOF的显著特点是其出色的比表面积、连通孔隙率和可变的化学功能,这使得将药物加载到其分级结构中有无数种方式。MOF结合生物相容性要求,现在被认为是治疗多种疾病的非常成功的DDS。本综述旨在介绍基于化学功能化MOF纳米结构的DDS在癌症治疗方面的发展和应用。文中简要概述了MOF-DDS的结构、合成及作用方式。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c07e/10005089/9fcd6bd92fe0/nanomaterials-13-00953-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c07e/10005089/ebfff097d55e/nanomaterials-13-00953-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c07e/10005089/832bb3cce549/nanomaterials-13-00953-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c07e/10005089/507e0d0bc8af/nanomaterials-13-00953-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c07e/10005089/1b7e835921d6/nanomaterials-13-00953-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c07e/10005089/57ac0c5e2364/nanomaterials-13-00953-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c07e/10005089/318458ceb55d/nanomaterials-13-00953-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c07e/10005089/382c042127e0/nanomaterials-13-00953-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c07e/10005089/bcf2220aae8e/nanomaterials-13-00953-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c07e/10005089/28ee5df61dc1/nanomaterials-13-00953-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c07e/10005089/ac52e8e538c5/nanomaterials-13-00953-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c07e/10005089/cb4270f12471/nanomaterials-13-00953-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c07e/10005089/5acf197b6c33/nanomaterials-13-00953-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c07e/10005089/fc15f32e5371/nanomaterials-13-00953-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c07e/10005089/31f3faf410ac/nanomaterials-13-00953-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c07e/10005089/f9c78c233265/nanomaterials-13-00953-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c07e/10005089/e51c88f7bc78/nanomaterials-13-00953-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c07e/10005089/9fcd6bd92fe0/nanomaterials-13-00953-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c07e/10005089/ebfff097d55e/nanomaterials-13-00953-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c07e/10005089/832bb3cce549/nanomaterials-13-00953-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c07e/10005089/507e0d0bc8af/nanomaterials-13-00953-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c07e/10005089/1b7e835921d6/nanomaterials-13-00953-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c07e/10005089/57ac0c5e2364/nanomaterials-13-00953-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c07e/10005089/318458ceb55d/nanomaterials-13-00953-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c07e/10005089/382c042127e0/nanomaterials-13-00953-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c07e/10005089/bcf2220aae8e/nanomaterials-13-00953-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c07e/10005089/28ee5df61dc1/nanomaterials-13-00953-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c07e/10005089/ac52e8e538c5/nanomaterials-13-00953-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c07e/10005089/cb4270f12471/nanomaterials-13-00953-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c07e/10005089/5acf197b6c33/nanomaterials-13-00953-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c07e/10005089/fc15f32e5371/nanomaterials-13-00953-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c07e/10005089/31f3faf410ac/nanomaterials-13-00953-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c07e/10005089/f9c78c233265/nanomaterials-13-00953-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c07e/10005089/e51c88f7bc78/nanomaterials-13-00953-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c07e/10005089/9fcd6bd92fe0/nanomaterials-13-00953-g017.jpg

相似文献

[1]
BioMOF-Based Anti-Cancer Drug Delivery Systems.

Nanomaterials (Basel). 2023-3-6

[2]
Recent Advances in Metal-Organic Frameworks as Anticancer Drug Delivery Systems: A Review.

Anticancer Agents Med Chem. 2021

[3]
A γ-cyclodextrin-based metal-organic framework (γ-CD-MOF): a review of recent advances for drug delivery application.

J Drug Target. 2022-4

[4]
Metal-Organic Framework (MOF)-Based Drug Delivery.

Curr Med Chem. 2020

[5]
Metal-Organic Framework (MOF)-Based Drug/Cargo Delivery and Cancer Therapy.

Adv Mater. 2017-3-29

[6]
Cyclodextrin Metal-Organic Frameworks and Their Applications.

Acc Chem Res. 2021-3-16

[7]
Glycopolymer-Functionalized MOF-808 Nanoparticles as a Cancer-Targeted Dual Drug Delivery System for Carboplatin and Floxuridine.

ACS Appl Nano Mater. 2022-10-28

[8]
Metal-organic frameworks for advanced drug delivery.

Acta Pharm Sin B. 2021-8

[9]
Advances and Applications of Metal-Organic Framework Nanomaterials as Oral Delivery Carriers: A Review.

Mini Rev Med Chem. 2022

[10]
Biomedical Applications of Metal-Organic Frameworks for Disease Diagnosis and Drug Delivery: A Review.

Nanomaterials (Basel). 2022-1-16

引用本文的文献

[1]
Application of Metal-Organic Frameworks Nanoparticles in the Diagnosis and Treatment of Breast Cancer.

Int J Nanomedicine. 2025-8-22

[2]
Synergistic chemotherapy and phototherapy co-delivery nanoparticle preparation and anti-triple negative breast cancer study.

RSC Adv. 2025-8-11

[3]
Histopathological and biochemical profiling of Carfilzomib-loaded Fe-Co MOFs.

Discov Nano. 2025-8-14

[4]
Nanoscale Porphyrin-Based Metal-Organic Frameworks for Enhanced Radiotherapy-Radiodynamic Therapy: A Comprehensive Review.

Pharmaceutics. 2025-7-4

[5]
A novel approach in using insect-based spinach-food waste for gene targeting to cancer tissues.

Sci Rep. 2025-4-22

[6]
Bioactive potency of extracts from and with silver nanoparticles against cancer cell lines and pathogenic bacteria.

Biomed Rep. 2024-12-19

[7]
Solid CaCO Formation in Glioblastoma Multiforme and its Treatment with Ultra-Nanoparticulated NPt-Bionanocatalysts.

Curr Cancer Drug Targets. 2025

[8]
Recent Advances in Mesoporous Silica Nanoparticles Delivering siRNA for Cancer Treatment.

Pharmaceutics. 2023-10-17

[9]
Antiapoptotic and chemotaxis-stimulating effects of poly (D, L-lactide-co-glycolide)-chitosan and whey proteins against aflatoxicosis-induced splenic and thymic atrophy.

Mol Biol Rep. 2023-12

本文引用的文献

[1]
Nanomedicines in oral cancer: inspiration comes from extracellular vesicles and biomimetic nanoparticles.

Nanomedicine (Lond). 2022-10

[2]
Fabrication of baicalein-encapsulated zeolitic imidazole framework as a novel nanocomposited wound closure material to persuade pH-responsive healing efficacy in post-caesarean section wound care.

Int Wound J. 2023-8

[3]
Metal-Organic Frameworks as Intelligent Drug Nanocarriers for Cancer Therapy.

Pharmaceutics. 2022-11-29

[4]
Functionalized biological metal-organic framework with nanosized coronal structure and hierarchical wrapping pattern for enhanced targeting therapy.

Chem Eng J. 2023-1-15

[5]
Review on Metal-Organic Framework Classification, Synthetic Approaches, and Influencing Factors: Applications in Energy, Drug Delivery, and Wastewater Treatment.

ACS Omega. 2022-12-2

[6]
Fabrication of Functional bioMOF-100 Prototype as Drug Delivery System for Breast Cancer Therapy.

Pharmaceutics. 2022-11-15

[7]
Engineered nanomedicines to overcome resistance of pancreatic cancer to immunotherapy.

Drug Discov Today. 2023-1

[8]
Engineering hybrid nanosystems for efficient and targeted delivery against bacterial infections.

J Control Release. 2022-11

[9]
Nanoscale MOFs: From synthesis to drug delivery and theranostics applications.

Adv Drug Deliv Rev. 2022-11

[10]
Engineering Bio-MOF/polydopamine as a biocompatible targeted theranostic system for synergistic multi-drug chemo-photothermal therapy.

Int J Pharm. 2022-7-25

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索