Suppr超能文献

化学精确的零能与非精确的激发态几何结构。

Chemically Accurate 0-0 Energies with Not-so-Accurate Excited State Geometries.

机构信息

Laboratoire de Chimie et Physique Quantiques , Université de Toulouse, CNRS, UPS , 31077 Toulouse , France.

Laboratoire CEISAM - UMR CNRS 6230 , Université de Nantes , 2 Rue de la Houssiniére, BP 92208 , 44322 Nantes , Cedex 3, France.

出版信息

J Chem Theory Comput. 2019 Apr 9;15(4):2481-2491. doi: 10.1021/acs.jctc.8b01103. Epub 2019 Mar 7.

Abstract

Using a series of increasingly refined wave function methods able to tackle electronic excited states, namely ADC(2), CC2, CCSD, CCSDR(3), and CC3, we investigate the interplay between geometries and 0-0 energies. We show that, due to a strong and nearly systematic error cancelation between the vertical transition and geometrical reorganization energies, CC2 and CCSD structures can be used to obtain chemically accurate 0-0 energies, though the underlying geometries are rather far from the reference ones and would deliver significant errors for several chemical and physical properties. This indicates that obtaining 0-0 energies matching experiment does not demonstrate the quality of the underlying geometrical parameters. By computing CC3 total energies on CCSD structures, we model a large set of compounds (including radicals) and electronic transitions (including singlet-triplet excitations) and successfully reach chemical accuracy in a near systematic way. Indeed, for this particular set, we obtain a mean absolute error as small as 0.032 eV, chemical accuracy (error smaller than 1 kcal·mol or 0.043 eV) being obtained in 80% of the cases. In only three cases out of more than 100 examples, the error exceeds 0.15 eV which is of the order of the typical error provided by TD-DFT or second-order wave function methods for 0-0 energies. The present composite approach seems therefore effective, at least for low-lying states, despite the fact that the geometries may not be considered as very accurate.

摘要

使用一系列能够处理电子激发态的越来越精细的波函数方法,即 ADC(2)、CC2、CCSD、CCSDR(3)和 CC3,我们研究了几何形状和 0-0 能量之间的相互作用。我们表明,由于垂直跃迁和几何重排能之间存在强烈且几乎系统的误差抵消,因此 CC2 和 CCSD 结构可用于获得化学上准确的 0-0 能量,尽管基础结构与参考结构相差甚远,并且会对许多化学和物理性质产生显著误差。这表明获得与实验匹配的 0-0 能量并不能证明基础几何参数的质量。通过在 CCSD 结构上计算 CC3 总能量,我们模拟了大量化合物(包括自由基)和电子跃迁(包括单重态三重态激发),并以近乎系统的方式成功达到了化学精度。实际上,对于这个特定的集合,我们获得了非常小的平均绝对误差 0.032 eV,在 80%的情况下可以达到化学精度(误差小于 1 kcal·mol 或 0.043 eV)。在 100 多个例子中,只有三个例子的误差超过 0.15 eV,这与 TD-DFT 或二阶波函数方法对 0-0 能量提供的典型误差相当。因此,尽管几何形状可能被认为不太准确,但这种组合方法似乎至少在低能态下是有效的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验