IEEE Trans Med Imaging. 2019 Oct;38(10):2445-2455. doi: 10.1109/TMI.2019.2900585. Epub 2019 Feb 22.
Magnetic resonance fingerprinting (MRF) is able to estimate multiple quantitative tissue parameters from a relatively short acquisition. The main characteristic of an MRF sequence is the simultaneous application of 1) transient states excitation and 2) highly undersampled k -space. Despite the promising empirical results obtained with MRF, no work has appeared that formally describes the combined impact of these two aspects on the reconstruction accuracy. In this paper, a mathematical model is derived that directly relates the time-varying RF excitation and the k -space sampling to the spatially dependent reconstruction errors. A subsequent in-depth analysis identifies the mechanisms by which MRF sequence properties affect accuracy, providing a formal explanation of several empirically observed or intuitively understood facts. The new insights are obtained which show how this analytical framework could be used to improve the MRF protocol.
磁共振指纹成像(MRF)能够从相对较短的采集时间内估算出多种定量组织参数。MRF 序列的主要特点是同时应用 1)瞬态状态激发和 2)高度欠采样的 k 空间。尽管 MRF 获得了有前景的经验结果,但没有出现正式描述这两个方面对重建准确性的综合影响的工作。本文推导了一个数学模型,该模型直接将时变射频激发和 k 空间采样与空间相关的重建误差联系起来。随后的深入分析确定了 MRF 序列特性影响准确性的机制,为一些经验观察到或直观理解的事实提供了正式解释。获得的新见解表明了如何使用这个分析框架来改进 MRF 协议。