Quantum Systems, Microsoft, Redmond, WA 98052.
Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106.
Proc Natl Acad Sci U S A. 2021 Oct 5;118(40). doi: 10.1073/pnas.2020516118. Epub 2021 Sep 30.
Magnetic resonance fingerprinting (MRF) is a method to extract quantitative tissue properties such as [Formula: see text] and [Formula: see text] relaxation rates from arbitrary pulse sequences using conventional MRI hardware. MRF pulse sequences have thousands of tunable parameters, which can be chosen to maximize precision and minimize scan time. Here, we perform de novo automated design of MRF pulse sequences by applying physics-inspired optimization heuristics. Our experimental data suggest that systematic errors dominate over random errors in MRF scans under clinically relevant conditions of high undersampling. Thus, in contrast to prior optimization efforts, which focused on statistical error models, we use a cost function based on explicit first-principles simulation of systematic errors arising from Fourier undersampling and phase variation. The resulting pulse sequences display features qualitatively different from previously used MRF pulse sequences and achieve fourfold shorter scan time than prior human-designed sequences of equivalent precision in [Formula: see text] and [Formula: see text] Furthermore, the optimization algorithm has discovered the existence of MRF pulse sequences with intrinsic robustness against shading artifacts due to phase variation.
磁共振指纹成像(MRF)是一种从任意脉冲序列中提取定量组织特性(如[T1]和[T2]弛豫率)的方法,可使用常规 MRI 硬件完成。MRF 脉冲序列有数千个可调参数,可以选择这些参数来最大限度地提高精度并最小化扫描时间。在这里,我们通过应用物理启发式优化启发式算法来进行 MRF 脉冲序列的全新自动设计。我们的实验数据表明,在临床相关的高欠采样条件下,MRF 扫描中的系统误差主导随机误差。因此,与之前专注于统计误差模型的优化工作不同,我们使用基于对由于傅里叶欠采样和相位变化引起的系统误差的显式第一性原理模拟的成本函数。所得脉冲序列显示出与先前使用的 MRF 脉冲序列明显不同的特征,并且在[T1]和[T2]的相同精度下,扫描时间比先前的人为设计的序列短四倍。此外,优化算法发现了由于相位变化而导致阴影伪影具有固有鲁棒性的 MRF 脉冲序列的存在。