Suppr超能文献

用于直接误差估计和序列优化的快速 MR 指纹模拟。

A fast MR fingerprinting simulator for direct error estimation and sequence optimization.

机构信息

Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA.

Microsoft Corporation, Redmond, WA 98052, USA.

出版信息

Magn Reson Imaging. 2023 May;98:105-114. doi: 10.1016/j.mri.2023.01.011. Epub 2023 Jan 18.

Abstract

Magnetic resonance fingerprinting (MRF) is a novel quantitative MR technique that simultaneously provides multiple tissue property maps. When optimizing MRF scans, modeling undersampling errors and field imperfections in cost functions for direct measurement of quantitative errors will make the optimization results more practical and robust. However, optimizing such cost function is computationally expensive and impractical for MRF optimization with tens of thousands of iterations. Here, we introduce a fast MRF simulator to simulate aliased images from actual scan scenarios including undersampling and system imperfections, which substantially reduces computational time and allows for direct error estimation of the quantitative maps and efficient sequence optimization. We evaluate the performance and computational speed of the proposed approach by simulations and in vivo experiments. The simulations from the proposed method closely approximate the signals and MRF maps from in vivo scans, with 158 times shorter processing time than the conventional simulation method using Non-uniform Fourier transform. We also demonstrate the power of applying the fast MRF simulator in MRF sequence optimization. The optimized sequences are validated with in vivo scans to assess the image quality and accuracy. The optimized sequences produce artifact-free T1 and T2 maps in 2D and 3D scans with equivalent mapping accuracy as the human-designed sequence but at shorter scan times. Incorporating the proposed simulator in the MRF optimization framework makes direct estimation of undersampling errors during the optimization process feasible, and provide optimized MRF sequences that are robust against undersampling artifacts and field inhomogeneity.

摘要

磁共振指纹成像(MRF)是一种新颖的定量磁共振技术,可同时提供多个组织属性图。在优化 MRF 扫描时,在成本函数中对欠采样误差和场不均匀性进行建模,以直接测量定量误差,这将使优化结果更实用和稳健。然而,对于需要数千次迭代的 MRF 优化,优化这种成本函数的计算量非常大且不切实际。在这里,我们引入了一种快速 MRF 模拟器,可模拟包括欠采样和系统不完美在内的实际扫描场景中的混叠图像,这大大减少了计算时间,并允许对定量图进行直接误差估计和有效的序列优化。我们通过模拟和体内实验评估了所提出方法的性能和计算速度。与传统的使用非均匀傅里叶变换的模拟方法相比,所提出的方法的模拟结果更接近体内扫描的信号和 MRF 图,处理时间缩短了 158 倍。我们还展示了在 MRF 序列优化中应用快速 MRF 模拟器的能力。通过体内扫描验证优化后的序列,以评估图像质量和准确性。优化后的序列在 2D 和 3D 扫描中产生无伪影的 T1 和 T2 图,其映射精度与人为设计的序列相当,但扫描时间更短。在 MRF 优化框架中纳入所提出的模拟器使得在优化过程中直接估计欠采样误差成为可能,并提供了针对欠采样伪影和场不均匀性具有稳健性的优化 MRF 序列。

相似文献

1
A fast MR fingerprinting simulator for direct error estimation and sequence optimization.
Magn Reson Imaging. 2023 May;98:105-114. doi: 10.1016/j.mri.2023.01.011. Epub 2023 Jan 18.
2
Efficient pulse sequence design framework for high-dimensional MR fingerprinting scans using systematic error index.
Magn Reson Med. 2024 Oct;92(4):1600-1616. doi: 10.1002/mrm.30155. Epub 2024 May 9.
3
Mitigating undersampling errors in MR fingerprinting by sequence optimization.
Magn Reson Med. 2023 May;89(5):2076-2087. doi: 10.1002/mrm.29554. Epub 2022 Dec 2.
4
Automated design of pulse sequences for magnetic resonance fingerprinting using physics-inspired optimization.
Proc Natl Acad Sci U S A. 2021 Oct 5;118(40). doi: 10.1073/pnas.2020516118. Epub 2021 Sep 30.
5
Deep learning-assisted preclinical MR fingerprinting for sub-millimeter T and T mapping of entire macaque brain.
Magn Reson Med. 2024 Mar;91(3):1149-1164. doi: 10.1002/mrm.29905. Epub 2023 Nov 6.
7
Effect of spiral undersampling patterns on FISP MRF parameter maps.
Magn Reson Imaging. 2019 Oct;62:174-180. doi: 10.1016/j.mri.2019.01.011. Epub 2019 Jan 15.
8
Parameter map error due to normal noise and aliasing artifacts in MR fingerprinting.
Magn Reson Med. 2019 May;81(5):3108-3123. doi: 10.1002/mrm.27638. Epub 2019 Jan 23.
9
Sparsity and locally low rank regularization for MR fingerprinting.
Magn Reson Med. 2019 Jun;81(6):3530-3543. doi: 10.1002/mrm.27665. Epub 2019 Feb 5.
10
Magnetic Resonance Fingerprinting with short relaxation intervals.
Magn Reson Imaging. 2017 Sep;41:22-28. doi: 10.1016/j.mri.2017.06.014. Epub 2017 Jun 27.

引用本文的文献

本文引用的文献

1
Automated design of pulse sequences for magnetic resonance fingerprinting using physics-inspired optimization.
Proc Natl Acad Sci U S A. 2021 Oct 5;118(40). doi: 10.1073/pnas.2020516118. Epub 2021 Sep 30.
2
A Perspective on MR Fingerprinting.
J Magn Reson Imaging. 2021 Mar;53(3):676-685. doi: 10.1002/jmri.27134. Epub 2020 Apr 14.
3
High-resolution 3D MR Fingerprinting using parallel imaging and deep learning.
Neuroimage. 2020 Feb 1;206:116329. doi: 10.1016/j.neuroimage.2019.116329. Epub 2019 Nov 2.
4
Fast 3D brain MR fingerprinting based on multi-axis spiral projection trajectory.
Magn Reson Med. 2019 Jul;82(1):289-301. doi: 10.1002/mrm.27726. Epub 2019 Mar 18.
5
Understanding the Combined Effect of k -Space Undersampling and Transient States Excitation in MR Fingerprinting Reconstructions.
IEEE Trans Med Imaging. 2019 Oct;38(10):2445-2455. doi: 10.1109/TMI.2019.2900585. Epub 2019 Feb 22.
6
Parameter map error due to normal noise and aliasing artifacts in MR fingerprinting.
Magn Reson Med. 2019 May;81(5):3108-3123. doi: 10.1002/mrm.27638. Epub 2019 Jan 23.
7
Simultaneous multislice cardiac magnetic resonance fingerprinting using low rank reconstruction.
NMR Biomed. 2019 Feb;32(2):e4041. doi: 10.1002/nbm.4041. Epub 2018 Dec 18.
8
Optimal Experiment Design for Magnetic Resonance Fingerprinting: Cramér-Rao Bound Meets Spin Dynamics.
IEEE Trans Med Imaging. 2019 Mar;38(3):844-861. doi: 10.1109/TMI.2018.2873704. Epub 2018 Oct 4.
9
Quantification of relaxation times in MR Fingerprinting using deep learning.
Proc Int Soc Magn Reson Med Sci Meet Exhib Int Soc Magn Reson Med Sci Meet Exhib. 2017 Apr;25.
10
MR fingerprinting Deep RecOnstruction NEtwork (DRONE).
Magn Reson Med. 2018 Sep;80(3):885-894. doi: 10.1002/mrm.27198. Epub 2018 Apr 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验