Opathalage Achini, Norton Michael M, Juniper Michael P N, Langeslay Blake, Aghvami S Ali, Fraden Seth, Dogic Zvonimir
Department of Physics, Brandeis University, Waltham, MA 02453.
Department of Physics, Brandeis University, Waltham, MA 02453;
Proc Natl Acad Sci U S A. 2019 Mar 12;116(11):4788-4797. doi: 10.1073/pnas.1816733116. Epub 2019 Feb 25.
We study how confinement transforms the chaotic dynamics of bulk microtubule-based active nematics into regular spatiotemporal patterns. For weak confinements in disks, multiple continuously nucleating and annihilating topological defects self-organize into persistent circular flows of either handedness. Increasing confinement strength leads to the emergence of distinct dynamics, in which the slow periodic nucleation of topological defects at the boundary is superimposed onto a fast procession of a pair of defects. A defect pair migrates toward the confinement core over multiple rotation cycles, while the associated nematic director field evolves from a distinct double spiral toward a nearly circularly symmetric configuration. The collapse of the defect orbits is punctuated by another boundary-localized nucleation event, that sets up long-term doubly periodic dynamics. Comparing experimental data to a theoretical model of an active nematic reveals that theory captures the fast procession of a pair of [Formula: see text] defects, but not the slow spiral transformation nor the periodic nucleation of defect pairs. Theory also fails to predict the emergence of circular flows in the weak confinement regime. The developed confinement methods are generalized to more complex geometries, providing a robust microfluidic platform for rationally engineering 2D autonomous flows.
我们研究了限制条件如何将基于微管的本体活性向列相的混沌动力学转变为规则的时空模式。对于圆盘形的弱限制条件,多个持续成核和湮灭的拓扑缺陷会自组织成具有任意旋向的持续环形流。增加限制强度会导致出现不同的动力学,其中边界处拓扑缺陷的缓慢周期性成核叠加在一对缺陷的快速行进之上。一对缺陷在多个旋转周期内朝着限制核心迁移,而相关的向列型指向矢场则从独特的双螺旋演变为近乎圆形对称的构型。缺陷轨道的坍缩被另一个边界局部成核事件打断,从而建立起长期的双周期动力学。将实验数据与活性向列相的理论模型进行比较发现,理论能够捕捉到一对[公式:见正文]缺陷的快速行进,但无法捕捉到缓慢的螺旋转变以及缺陷对的周期性成核。理论也无法预测弱限制区域中环形流的出现。所开发的限制方法被推广到更复杂的几何形状,为合理设计二维自主流动提供了一个强大的微流控平台。