Suppr超能文献

非病毒超声介导的基因在小动物和大动物模型中的传递。

Nonviral ultrasound-mediated gene delivery in small and large animal models.

机构信息

Skeletal Biotech Laboratory, The Hebrew University-Hadassah Faculty of Dental Medicine, Ein Kerem, Jerusalem, Israel.

Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA.

出版信息

Nat Protoc. 2019 Apr;14(4):1015-1026. doi: 10.1038/s41596-019-0125-y. Epub 2019 Feb 25.

Abstract

Ultrasound-mediated gene delivery (sonoporation) is a minimally invasive, nonviral and clinically translatable method of gene therapy. This method offers a favorable safety profile over that of viral vectors and is less invasive as compared with other physical gene delivery approaches (e.g., electroporation). We have previously used sonoporation to overexpress transgenes in different skeletal tissues in order to induce tissue regeneration. Here, we provide a protocol that could easily be adapted to address various other targets of tissue regeneration or additional applications, such as cancer and neurodegenerative diseases. This protocol describes how to prepare, conduct and optimize ultrasound-mediated gene delivery in both a murine and a porcine animal model. The protocol includes the preparation of a microbubble-DNA mix and in vivo sonoporation under ultrasound imaging. Ultrasound-mediated gene delivery can be accomplished within 10 min. After DNA delivery, animals can be followed to monitor gene expression, protein secretion and other transgene-specific outcomes, including tissue regeneration. This procedure can be accomplished by a competent graduate student or technician with prior experience in ultrasound imaging or in performing in vivo procedures.

摘要

超声介导的基因传递(声孔作用)是一种微创、非病毒且可临床转化的基因治疗方法。与病毒载体相比,该方法具有更好的安全性,并且比其他物理基因传递方法(如电穿孔)的侵入性更小。我们之前曾使用声孔作用在不同的骨骼组织中过表达转基因,以诱导组织再生。在这里,我们提供了一个易于适应的方案,可以解决组织再生或其他应用的各种其他目标,例如癌症和神经退行性疾病。本方案描述了如何在小鼠和猪动物模型中制备、进行和优化超声介导的基因传递。该方案包括微泡-DNA 混合物的制备和超声成像下的体内声孔作用。超声介导的基因传递可以在 10 分钟内完成。在 DNA 传递后,可以对动物进行跟踪,以监测基因表达、蛋白质分泌和其他转基因特异性结果,包括组织再生。具有超声成像或体内操作经验的有能力的研究生或技术人员可以完成此过程。

相似文献

1
Nonviral ultrasound-mediated gene delivery in small and large animal models.
Nat Protoc. 2019 Apr;14(4):1015-1026. doi: 10.1038/s41596-019-0125-y. Epub 2019 Feb 25.
2
Multiparameter evaluation of in vivo gene delivery using ultrasound-guided, microbubble-enhanced sonoporation.
J Control Release. 2016 Feb 10;223:157-164. doi: 10.1016/j.jconrel.2015.12.001. Epub 2015 Dec 10.
3
Advances in sonoporation strategies for cancer.
Front Biosci (Schol Ed). 2012 Jan 1;4(3):988-1006. doi: 10.2741/s313.
4
Cationic microbubbles and antibiotic-free miniplasmid for sustained ultrasound-mediated transgene expression in liver.
J Control Release. 2017 Sep 28;262:170-181. doi: 10.1016/j.jconrel.2017.07.015. Epub 2017 Jul 11.
5
Ultrasound and microbubble-assisted gene delivery: recent advances and ongoing challenges.
Ther Deliv. 2012 Oct;3(10):1199-215. doi: 10.4155/tde.12.100.
6
Efficient Gene Delivery by Sonoporation Is Associated with Microbubble Entry into Cells and the Clathrin-Dependent Endocytosis Pathway.
Ultrasound Med Biol. 2015 Jul;41(7):1913-26. doi: 10.1016/j.ultrasmedbio.2015.03.010. Epub 2015 Apr 27.
7
[Ultrasound-mediated gene delivery].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2005 Apr;22(2):403-6.
8
Microbubbles and ultrasound increase intraventricular polyplex gene transfer to the brain.
J Control Release. 2016 Jun 10;231:86-93. doi: 10.1016/j.jconrel.2016.02.003. Epub 2016 Feb 6.
9
Optimization of ultrasound-mediated gene transfer: comparison of contrast agents and ultrasound modalities.
Eur Heart J. 2003 Sep;24(18):1690-8. doi: 10.1016/s0195-668x(03)00469-x.
10
Nonviral gene therapy targeting cardiovascular system.
Am J Physiol Heart Circ Physiol. 2012 Sep 15;303(6):H629-38. doi: 10.1152/ajpheart.00126.2012. Epub 2012 Jul 20.

引用本文的文献

1
The regulation of reporter transgene expression for diverse biological imaging applications.
Npj Imaging. 2025 Mar 4;3(1):9. doi: 10.1038/s44303-025-00070-6.
2
Excavation of acoustic nanostructures biosynthesis gene clusters by combinatorial strategy.
Adv Biotechnol (Singap). 2025 May 15;3(2):15. doi: 10.1007/s44307-025-00069-5.
3
Noninvasive Novel Transdermal Drug Delivery System for Deep Drug Permeability.
Research (Wash D C). 2024 Oct 14;7:0504. doi: 10.34133/research.0504. eCollection 2024.
4
Research progress of gene therapy combined with tissue engineering to promote bone regeneration.
APL Bioeng. 2024 Sep 18;8(3):031502. doi: 10.1063/5.0200551. eCollection 2024 Sep.
5
Low-Frequency Sonophoresis: A Promising Strategy for Enhanced Transdermal Delivery.
Adv Pharmacol Pharm Sci. 2024 Jun 5;2024:1247450. doi: 10.1155/2024/1247450. eCollection 2024.
6
Advances and challenges in gene therapy strategies for pediatric cancer: a comprehensive update.
Front Mol Biosci. 2024 May 21;11:1382190. doi: 10.3389/fmolb.2024.1382190. eCollection 2024.
7
Antibiotic-Free Gene Vectors: A 25-Year Journey to Clinical Trials.
Genes (Basel). 2024 Feb 20;15(3):261. doi: 10.3390/genes15030261.
8
50-nm Gas-Filled Protein Nanostructures to Enable the Access of Lymphatic Cells by Ultrasound Technologies.
Adv Mater. 2024 Jul;36(28):e2307123. doi: 10.1002/adma.202307123. Epub 2024 Apr 4.
9
mRNA Sonotransfection of Tumors with Polymeric Microbubbles: Co-Formulation versus Co-Administration.
Adv Sci (Weinh). 2024 Apr;11(15):e2306139. doi: 10.1002/advs.202306139. Epub 2024 Feb 11.
10
Delivery of Growth Factors to Enhance Bone Repair.
Bioengineering (Basel). 2023 Oct 26;10(11):1252. doi: 10.3390/bioengineering10111252.

本文引用的文献

1
Delivery of interleukin-15 to B16 melanoma by electroporation leads to tumor regression and long-term survival.
Technol Cancer Res Treat. 2014 Dec;13(6):551-60. doi: 10.7785/tcrtexpress.2013.600252. Epub 2013 Aug 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验