Lim Sung Don, Lee Sojeong, Choi Won-Gyu, Yim Won Cheol, Cushman John C
Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, NV, United States.
Front Plant Sci. 2019 Feb 11;10:101. doi: 10.3389/fpls.2019.00101. eCollection 2019.
Crassulacean acid metabolism (CAM) is a specialized mode of photosynthesis that exploits a temporal CO pump with nocturnal CO uptake and concentration to reduce photorespiration, improve water-use efficiency (WUE), and optimize the adaptability of plants to hotter and drier climates. Introducing the CAM photosynthetic machinery into C (or C) photosynthesis plants (CAM Biodesign) represents a potentially breakthrough strategy for improving WUE while maintaining high productivity. To optimize the success of CAM Biodesign approaches, the functional analysis of individual C metabolism cycle genes is necessary to identify the essential genes for robust CAM pathway introduction. Here, we isolated and analyzed the subcellular localizations of 13 enzymes and regulatory proteins of the C metabolism cycle of CAM from the common ice plant in stably transformed . Six components of the carboxylation module were analyzed including beta-carbonic anhydrase (), phosphoenolpyruvate carboxylase (), phosphoenolpyruvate carboxylase kinase (), NAD-dependent malate dehydrogenase (, ), and NADP-dependent malate dehydrogenase (). In addition, seven components of the decarboxylation module were analyzed including NAD-dependent malic enzyme (, ), NADP-dependent malic enzyme (, ), pyruvate, orthophosphate dikinase (), pyruvate, orthophosphate dikinase-regulatory protein (), and phosphoenolpyruvate carboxykinase (). Ectopic overexpression of most C-metabolism cycle components resulted in increased rosette diameter, leaf area, and leaf fresh weight of except for , , and Overexpression of most carboxylation module components resulted in increased stomatal conductance and dawn/dusk titratable acidity (TA) as an indirect measure of organic acid (mainly malate) accumulation in . In contrast, overexpression of the decarboxylating malic enzymes reduced stomatal conductance and TA. This comprehensive study provides fundamental insights into the relative functional contributions of each of the individual components of the core C-metabolism cycle of CAM and represents a critical first step in laying the foundation for CAM Biodesign.
景天酸代谢(CAM)是一种特殊的光合作用模式,它利用一种时间性的CO泵,在夜间吸收并浓缩CO₂,以减少光呼吸,提高水分利用效率(WUE),并优化植物对更炎热和干燥气候的适应性。将CAM光合机制引入C₃(或C₄)光合作用植物(CAM生物设计)是一种在保持高生产力的同时提高WUE的潜在突破性策略。为了优化CAM生物设计方法的成功率,对单个C代谢循环基因进行功能分析对于确定引入稳健CAM途径的必需基因是必要的。在这里,我们从稳定转化的普通冰叶日中花中分离并分析了CAM的C代谢循环的13种酶和调节蛋白的亚细胞定位。分析了羧化模块的六个组分,包括β-碳酸酐酶(β-CA)、磷酸烯醇式丙酮酸羧化酶(PEPC)、磷酸烯醇式丙酮酸羧化酶激酶(PEPCK)、NAD依赖的苹果酸脱氢酶(MDH,NAD-MDH)和NADP依赖的苹果酸脱氢酶(NADP-MDH)。此外,分析了脱羧模块的七个组分,包括NAD依赖的苹果酸酶(NAD-ME,NAD-ME1和NAD-ME2)、NADP依赖的苹果酸酶(NADP-ME,NADP-ME1和NADP-ME2)、丙酮酸,磷酸二激酶(PPDK)、丙酮酸,磷酸二激酶调节蛋白(PPDK-RP)和磷酸烯醇式丙酮酸羧激酶(PEPCK)。除了NADP-ME1、NADP-ME2和PPDK-RP外,大多数C代谢循环组分的异位过表达导致莲座直径、叶面积和叶鲜重增加。大多数羧化模块组分的过表达导致气孔导度增加以及黎明/黄昏可滴定酸度(TA)增加,作为植物中有机酸(主要是苹果酸)积累的间接指标。相反,脱羧苹果酸酶的过表达降低了气孔导度和TA。这项全面的研究为CAM核心C代谢循环中各个组分的相对功能贡献提供了基本见解,并代表了为CAM生物设计奠定基础的关键第一步。