Suppr超能文献

扩展随机效应检验以评估因子模型中的测量不变性。

Extending Tests of Random Effects to Assess for Measurement Invariance in Factor Models.

作者信息

Zhang Zhenzhen, Braun Thomas M, Peterson Karen E, Hu Howard, Téllez-Rojo Martha M, Sánchez Brisa N

机构信息

Department of Biostatistics, University of Michigan, Ann Arbor, U.S.A.

Department of Nutritional Sciences, University of Michigan, Ann Arbor, U.S.A.

出版信息

Stat Biosci. 2018 Dec;10(3):634-650. doi: 10.1007/s12561-018-9222-7. Epub 2018 Sep 29.

Abstract

Factor analysis models are widely used in health research to summarize hard to measure predictor or outcome variable constructs. For example, in the ELEMENT study, factor models are used to summarize lead exposure biomarkers which are thought to indirectly measure prenatal exposure to lead. Classic latent factor models are fitted assuming that factor loadings are constant across all covariate levels (e.g., maternal age in ELEMENT); that is, measurement invariance (MI) is assumed. When the MI is not met, measurement bias is introduced. Traditionally, MI is examined by defining subgroups of the data based on covariates, fitting multi-group factor analysis, and testing differences in factor loadings across covariate groups. In this paper, we develop novel tests of measurement invariance by modeling the factor loadings as varying coeffcients, i.e., letting the factor loading vary across continuous covariate values instead of groups. These varying coeffcients are estimated using penalized splines, where spline coeffcients are penalized by treating them as random coeffcients. The test of MI is then carried out by conducting a likelihood ratio test for the null hypothesis that the variance of the random spline coeffcients equals zero. We use a Monte-Carlo EM algorithm for estimation, and obtain the likelihood using Monte-Carlo in tegration. Using simulations, we compare the Type I error and power of our testing approach and the multi-group testing method. We apply the proposed methods to to summarize data on prenatal biomarkers of lead exposure from the ELEMENT study and find violations of MI due to maternal age.

摘要

因子分析模型在健康研究中被广泛应用,用于总结难以测量的预测变量或结果变量结构。例如,在“ELEMENT研究”中,因子模型用于总结铅暴露生物标志物,这些标志物被认为可间接测量产前铅暴露情况。经典的潜在因子模型在拟合时假定因子载荷在所有协变量水平上都是恒定的(例如,“ELEMENT研究”中的母亲年龄);也就是说,假定测量不变性(MI)成立。当不满足测量不变性时,就会引入测量偏差。传统上,通过基于协变量定义数据子组、拟合多组因子分析以及检验协变量组间因子载荷的差异来检验测量不变性。在本文中,我们通过将因子载荷建模为可变系数来开发新的测量不变性检验方法,即让因子载荷随连续协变量值而非组而变化。这些可变系数使用惩罚样条进行估计,其中样条系数通过将其视为随机系数来进行惩罚。然后通过对随机样条系数的方差等于零这一原假设进行似然比检验来进行测量不变性检验。我们使用蒙特卡罗期望最大化(EM)算法进行估计,并通过蒙特卡罗积分获得似然值。通过模拟,我们比较了我们的检验方法和多组检验方法的I型错误率和检验功效。我们将所提出的方法应用于总结“ELEMENT研究”中产前铅暴露生物标志物的数据,并发现由于母亲年龄导致了测量不变性的违背。

相似文献

8
An essay on measurement and factorial invariance.一篇关于测量与因子不变性的文章。
Med Care. 2006 Nov;44(11 Suppl 3):S69-77. doi: 10.1097/01.mlr.0000245438.73837.89.
9
Sum Scores in Twin Growth Curve Models: Practicality Versus Bias.双胞胎生长曲线模型中的总分:实用性与偏差
Behav Genet. 2017 Sep;47(5):516-536. doi: 10.1007/s10519-017-9864-0. Epub 2017 Aug 5.

本文引用的文献

4
Permutation tests for random effects in linear mixed models.线性混合模型中随机效应的排列检验。
Biometrics. 2012 Jun;68(2):486-93. doi: 10.1111/j.1541-0420.2011.01675.x. Epub 2011 Sep 27.
6
Residual-based diagnostics for structural equation models.结构方程模型的基于残差的诊断方法。
Biometrics. 2009 Mar;65(1):104-15. doi: 10.1111/j.1541-0420.2008.01022.x. Epub 2008 Mar 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验