Departamento de Matemática Aplicada, Instituto de Matemática e Estatística, Universidade de São Paulo, Rua do Matão 1010, São Paulo, SP, 05508-090, Brazil.
Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, Avenida dos Estados 5001, Santo André, SP, 09210-580, Brazil.
Bull Math Biol. 2019 Jun;81(6):1687-1730. doi: 10.1007/s11538-019-00581-5. Epub 2019 Feb 25.
The aim of this work is to understand the spatial spread of Chagas disease, which is primarily transmitted by triatomines. We propose a mathematical model using a system of partial differential reaction-diffusion equations to study and describe the spread of this disease in the human population. We consider the respective subclasses of infected and uninfected individuals within the human and triatomine populations. The dynamics of the infected human subpopulation considers two disease phases: acute and chronic. The human population is considered to be homogeneously distributed across a space to describe the local propagation of Chagas disease by triatomines during a short epidemic period. We determine the basic reproduction number that allows us to assess Chagas disease control measures, and we determine the speed of disease propagation by using traveling wave solutions for our model.
这项工作的目的是了解恰加斯病的空间传播,这种疾病主要是由三锥虫传播的。我们提出了一个使用偏微分反应扩散方程系统的数学模型,以研究和描述这种疾病在人类中的传播。我们考虑了人类和三锥虫种群中受感染和未受感染个体的各自亚类。受感染的人类亚群的动态考虑了两种疾病阶段:急性和慢性。人类种群在空间上被认为是均匀分布的,以描述短流行期间三锥虫引起的恰加斯病的局部传播。我们确定了基本繁殖数,这使我们能够评估恰加斯病的控制措施,并通过我们的模型的行波解来确定疾病传播的速度。