Institute for Biophysical Chemistry, Hannover Medical School, 30625 Hannover, Germany.
Institute of Complex Systems, ICS-7: Biomechanics, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.
Proc Natl Acad Sci U S A. 2019 Feb 26;116(9):3594-3603. doi: 10.1073/pnas.1821638116. Epub 2019 Feb 11.
The contractile actin cortex is a thin layer of filamentous actin, myosin motors, and regulatory proteins beneath the plasma membrane crucial to cytokinesis, morphogenesis, and cell migration. However, the factors regulating actin assembly in this compartment are not well understood. Using the model system, we show that the three Diaphanous-related formins (DRFs) ForA, ForE, and ForH are regulated by the RhoA-like GTPase RacE and synergize in the assembly of filaments in the actin cortex. Single or double formin-null mutants displayed only moderate defects in cortex function whereas the concurrent elimination of all three formins or of RacE caused massive defects in cortical rigidity and architecture as assessed by aspiration assays and electron microscopy. Consistently, the triple formin and RacE mutants encompassed large peripheral patches devoid of cortical F-actin and exhibited severe defects in cytokinesis and multicellular development. Unexpectedly, many // and mutants protruded efficiently, formed multiple exaggerated fronts, and migrated with morphologies reminiscent of rapidly moving fish keratocytes. In 2D-confinement, however, these mutants failed to properly polarize and recruit myosin II to the cell rear essential for migration. Cells arrested in these conditions displayed dramatically amplified flow of cortical actin filaments, as revealed by total internal reflection fluorescence (TIRF) imaging and iterative particle image velocimetry (PIV). Consistently, individual and combined, CRISPR/Cas9-mediated disruption of genes encoding mDia1 and -3 formins in B16-F1 mouse melanoma cells revealed enhanced frequency of cells displaying multiple fronts, again accompanied by defects in cell polarization and migration. These results suggest evolutionarily conserved functions for formin-mediated actin assembly in actin cortex mechanics.
收缩性肌动球蛋白皮层是一层丝状肌动蛋白、肌球蛋白马达和调节蛋白,位于质膜下方,对胞质分裂、形态发生和细胞迁移至关重要。然而,该隔室中调节肌动蛋白组装的因素还没有被很好地理解。在 模型系统中,我们表明,三种 Dia 相关formin(DRFs)ForA、ForE 和 ForH 受 RhoA 样 GTPase RacE 调控,并协同组装肌动球蛋白皮层中的丝状肌动蛋白。单个或双 formin 缺失突变体仅在皮层功能上表现出中度缺陷,而同时消除所有三种 formin 或 RacE 会导致皮层刚性和结构的严重缺陷,这可以通过抽吸试验和电子显微镜评估。一致地,三形式和 RacE 突变体包含大的周边斑块,缺乏皮质 F-肌动蛋白,并表现出胞质分裂和多细胞发育的严重缺陷。出乎意料的是,许多 // 和 突变体有效地伸出,形成多个夸张的前沿,并表现出与快速移动的鱼类角状细胞相似的形态迁移。然而,在二维限制条件下,这些突变体无法正确极化并招募肌球蛋白 II 到细胞后部,这对于迁移是必需的。在这些条件下被阻断的细胞显示出皮质肌动蛋白丝的流动显著放大,这可以通过全内反射荧光(TIRF)成像和迭代粒子图像测速(PIV)揭示。一致地,通过 CRISPR/Cas9 介导的个体和组合破坏编码 mDia1 和 -3 formin 的基因,在 B16-F1 小鼠黑色素瘤细胞中,显示出具有多个前沿的细胞的频率增加,再次伴随着细胞极化和迁移的缺陷。这些结果表明,formin 介导的肌动球蛋白皮层力学中的肌动蛋白组装具有进化保守的功能。