Institut National de la Recherche Agronomique, UR892, Virologie Immunologie Moléculaires, F-78350, Jouy-en-Josas, France.
Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR8233, MONARIS, Université Pierre et Marie Curie, F-75005, Paris, France.
Sci Rep. 2019 Feb 26;9(1):2802. doi: 10.1038/s41598-019-39261-8.
The prion protein (PrP) misfolds and assembles into a wide spectrum of self-propagating quaternary structures, designated PrP. These various PrP superstructures can be functionally different, conferring clinically distinctive symptomatology, neuropathology and infectious character to the associated prion diseases. However, a satisfying molecular basis of PrP structural diversity is lacking in the literature. To provide mechanistic insights into the etiology of PrP polymorphism, we have engineered a set of 6 variants of the human protein and obtained PrP amyloid fibrils. We show that pressure induces dissociation of the fibrils, albeit with different kinetics. In addition, by focusing on the generic properties of amyloid fibrils, such as the thioflavin T binding capacities and the PK-resistance, we reveal an unprecedented structure-barostability phenomenological relationship. We propose that the structural diversity of PrP fibrils encompass a multiplicity of packing defects (water-excluded cavities) in their hydrophobic cores, and that the resultant sensitivity to pressure should be considered as a general molecular criterion to accurately define fibril morphotypes. We anticipate that our insights into sequence-dependent fibrillation and conformational stability will shed light on the highly-nuanced prion strain phenomenon and open the opportunity to explain different PrP conformations in terms of volumetric physics.
朊病毒蛋白(PrP)错误折叠并组装成广泛的自我传播的四级结构,称为 PrP。这些不同的 PrP 超结构在功能上可能不同,为相关的朊病毒疾病赋予独特的临床症状、神经病理学和传染性特征。然而,文献中缺乏对 PrP 结构多样性的令人满意的分子基础。为了深入了解 PrP 多态性的病因,我们设计了一组 6 种人类蛋白变体,并获得了 PrP 淀粉样纤维。我们表明,压力诱导纤维的解离,尽管动力学不同。此外,通过关注淀粉样纤维的一般性质,如硫黄素 T 结合能力和 PK 抗性,我们揭示了一种前所未有的结构压力稳定性现象性关系。我们提出,PrP 纤维的结构多样性包含其疏水区内的多种包装缺陷(排除水的空腔),并且对压力的敏感性应该被认为是准确定义纤维形态的一般分子标准。我们预计,我们对序列依赖性纤维化和构象稳定性的见解将阐明高度细致的朊病毒株现象,并为根据体积物理解释不同的 PrP 构象提供机会。