Suppr超能文献

噬菌体编码糖肤及其免疫蛋白的差异表达表明噬菌体与其宿主之间存在一种互利共生策略。

Differential expression of a prophage-encoded glycocin and its immunity protein suggests a mutualistic strategy of a phage and its host.

机构信息

University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, Hanzeplein 1, P.O. Box 30001, 9700 RB, Groningen, The Netherlands.

Department of Biology and Biochemistry, University of Bath, Bath, UK.

出版信息

Sci Rep. 2019 Feb 26;9(1):2845. doi: 10.1038/s41598-019-39169-3.

Abstract

Sublancin 168 is a highly potent and stable antimicrobial peptide secreted by the Gram-positive bacterium Bacillus subtilis. Production of sublancin gives B. subtilis a major competitive growth advantage over a range of other bacteria thriving in the same ecological niches, the soil and plant rhizosphere. B. subtilis protects itself against sublancin by producing the cognate immunity protein SunI. Previous studies have shown that both the sunA gene for sublancin and the sunI immunity gene are encoded by the prophage SPβ. The sunA gene is under control of several transcriptional regulators. Here we describe the mechanisms by which sunA is heterogeneously expressed within a population, while the sunI gene encoding the immunity protein is homogeneously expressed. The key determinants in heterogeneous sunA expression are the transcriptional regulators Spo0A, AbrB and Rok. Interestingly, these regulators have only a minor influence on sunI expression and they have no effect on the homogeneous expression of sunI within a population of growing cells. Altogether, our findings imply that the homogeneous expression of sunI allows even cells that are not producing sublancin to protect themselves at all times from the active sublancin produced at high levels by their isogenic neighbors. This suggests a mutualistic evolutionary strategy entertained by the SPβ prophage and its Bacillus host, ensuring both stable prophage maintenance and a maximal competitive advantage for the host at minimal costs.

摘要

短小芽孢杆菌素 168 是一种高效且稳定的抗菌肽,由革兰氏阳性细菌枯草芽孢杆菌分泌。短小芽孢杆菌素的产生使枯草芽孢杆菌在与其他在同一生态位(土壤和植物根际)中茁壮成长的细菌竞争时具有显著的生长优势。枯草芽孢杆菌通过产生同源免疫蛋白 SunI 来保护自身免受短小芽孢杆菌素的侵害。先前的研究表明,短小芽孢杆菌素的 sunA 基因和 SunI 免疫基因均由噬菌体 SPβ 编码。sunA 基因受多个转录调控因子的控制。在这里,我们描述了 sunA 在群体中异质表达的机制,而编码免疫蛋白的 sunI 基因则均匀表达。sunA 异质表达的关键决定因素是转录调控因子 Spo0A、AbrB 和 Rok。有趣的是,这些调控因子对 sunI 表达的影响很小,并且对生长细胞群体中 sunI 的均匀表达没有影响。总的来说,我们的研究结果表明,sunI 的均匀表达使得即使不产生短小芽孢杆菌素的细胞也能始终保护自己免受其同源邻居高水平产生的活性短小芽孢杆菌素的侵害。这表明 SPβ 噬菌体及其枯草芽孢杆菌宿主采用了一种互利的进化策略,确保了噬菌体的稳定维持和宿主的最大竞争优势,同时成本最小化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab7c/6391423/dff9f8018bf7/41598_2019_39169_Fig1_HTML.jpg

相似文献

2
Immunity to the bacteriocin sublancin 168 Is determined by the SunI (YolF) protein of Bacillus subtilis.
Antimicrob Agents Chemother. 2009 Feb;53(2):651-61. doi: 10.1128/AAC.01189-08. Epub 2008 Dec 1.
6
Developmentally-regulated excision of the SPβ prophage reconstitutes a gene required for spore envelope maturation in Bacillus subtilis.
PLoS Genet. 2014 Oct 9;10(10):e1004636. doi: 10.1371/journal.pgen.1004636. eCollection 2014 Oct.
9
The life cycle of SPβ and related phages.
Arch Virol. 2021 Aug;166(8):2119-2130. doi: 10.1007/s00705-021-05116-9. Epub 2021 Jun 7.
10
PamR, a new MarR-like regulator affecting prophages and metabolic genes expression in Bacillus subtilis.
PLoS One. 2017 Dec 14;12(12):e0189694. doi: 10.1371/journal.pone.0189694. eCollection 2017.

引用本文的文献

1
Rok from B. subtilis: Bridging genome structure and transcription regulation.
Mol Microbiol. 2025 Feb;123(2):109-123. doi: 10.1111/mmi.15250. Epub 2024 Mar 21.
2
The genome of EA-CB0015 sheds light into its epiphytic lifestyle and potential as a biocontrol agent.
Front Microbiol. 2023 Mar 27;14:1135487. doi: 10.3389/fmicb.2023.1135487. eCollection 2023.
3
The B. subtilis Rok protein is an atypical H-NS-like protein irresponsive to physico-chemical cues.
Nucleic Acids Res. 2022 Nov 28;50(21):12166-12185. doi: 10.1093/nar/gkac1064.
4
Characterization of the Biosynthetic Gene Cluster of Enterocin F4-9, a Glycosylated Bacteriocin.
Microorganisms. 2021 Nov 1;9(11):2276. doi: 10.3390/microorganisms9112276.
5
The life cycle of SPβ and related phages.
Arch Virol. 2021 Aug;166(8):2119-2130. doi: 10.1007/s00705-021-05116-9. Epub 2021 Jun 7.
6
Pervasive prophage recombination occurs during evolution of spore-forming Bacilli.
ISME J. 2021 May;15(5):1344-1358. doi: 10.1038/s41396-020-00854-1. Epub 2020 Dec 20.
7
Characterization and Quantitative Determination of a Diverse Group of Bacillus subtilis subsp. subtilis NCIB 3610 Antibacterial Peptides.
Probiotics Antimicrob Proteins. 2021 Apr;13(2):555-570. doi: 10.1007/s12602-020-09706-y. Epub 2020 Sep 12.

本文引用的文献

1
Rapid Discovery of Glycocins through Pathway Refactoring in Escherichia coli.
ACS Chem Biol. 2018 Oct 19;13(10):2966-2972. doi: 10.1021/acschembio.8b00599. Epub 2018 Sep 18.
2
Prevention of Cyclophosphamide-Induced Immunosuppression in Mice with the Antimicrobial Peptide Sublancin.
J Immunol Res. 2018 May 7;2018:4353580. doi: 10.1155/2018/4353580. eCollection 2018.
3
Structure-Activity Relationships of the S-Linked Glycocin Sublancin.
ACS Chem Biol. 2017 Dec 15;12(12):2965-2969. doi: 10.1021/acschembio.7b00819. Epub 2017 Nov 10.
5
The glycocins: in a class of their own.
Curr Opin Struct Biol. 2016 Oct;40:112-119. doi: 10.1016/j.sbi.2016.09.003. Epub 2016 Sep 21.
6
The cell envelope stress response of Bacillus subtilis: from static signaling devices to dynamic regulatory network.
Curr Genet. 2017 Feb;63(1):79-90. doi: 10.1007/s00294-016-0624-0. Epub 2016 Jun 25.
7
Quantitative prediction of genome-wide resource allocation in bacteria.
Metab Eng. 2015 Nov;32:232-243. doi: 10.1016/j.ymben.2015.10.003. Epub 2015 Oct 21.
8
The phosphoenolpyruvate:sugar phosphotransferase system is involved in sensitivity to the glucosylated bacteriocin sublancin.
Antimicrob Agents Chemother. 2015 Nov;59(11):6844-54. doi: 10.1128/AAC.01519-15. Epub 2015 Aug 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验