Suppr超能文献

在芽孢形成芽孢杆菌的进化过程中,普遍存在噬菌体重组。

Pervasive prophage recombination occurs during evolution of spore-forming Bacilli.

机构信息

Bacterial Interactions and Evolution Group, Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kongens Lyngby, Denmark.

Bacterial Ecophysiology and Biotechnology Group, Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kongens Lyngby, Denmark.

出版信息

ISME J. 2021 May;15(5):1344-1358. doi: 10.1038/s41396-020-00854-1. Epub 2020 Dec 20.

Abstract

Phages are the main source of within-species bacterial diversity and drivers of horizontal gene transfer, but we know little about the mechanisms that drive genetic diversity of these mobile genetic elements (MGEs). Recently, we showed that a sporulation selection regime promotes evolutionary changes within SPβ prophage of Bacillus subtilis, leading to direct antagonistic interactions within the population. Herein, we reveal that under a sporulation selection regime, SPβ recombines with low copy number phi3Ts phage DNA present within the B. subtilis population. Recombination results in a new prophage occupying a different integration site, as well as the spontaneous release of virulent phage hybrids. Analysis of Bacillus sp. strains suggests that SPβ and phi3T belong to a distinct cluster of unusually large phages inserted into sporulation-related genes that are equipped with a spore-related genetic arsenal. Comparison of Bacillus sp. genomes indicates that similar diversification of SPβ-like phages takes place in nature. Our work is a stepping stone toward empirical studies on phage evolution, and understanding the eco-evolutionary relationships between bacteria and their phages. By capturing the first steps of new phage evolution, we reveal striking relationship between survival strategy of bacteria and evolution of their phages.

摘要

噬菌体是物种内细菌多样性的主要来源和水平基因转移的驱动因素,但我们对这些移动遗传元件(MGE)遗传多样性的驱动机制知之甚少。最近,我们表明,孢子形成选择会促进枯草芽孢杆菌 SPβ 噬菌体的进化变化,从而导致种群内的直接拮抗相互作用。在此,我们揭示了在孢子形成选择下,SPβ 与枯草芽孢杆菌种群中存在的低拷贝数 phi3Ts 噬菌体 DNA 发生重组。重组导致新的噬菌体占据不同的整合位点,并自发释放有毒噬菌体杂种。对芽孢杆菌属菌株的分析表明,SPβ 和 phi3T 属于一个独特的簇,其中包括插入到与孢子形成相关基因中的异常大噬菌体,这些噬菌体配备了与孢子相关的遗传武器库。对芽孢杆菌属基因组的比较表明,SPβ 样噬菌体的类似多样化在自然界中发生。我们的工作是对噬菌体进化进行实证研究以及理解细菌与其噬菌体之间的生态进化关系的垫脚石。通过捕捉新噬菌体进化的最初步骤,我们揭示了细菌的生存策略与噬菌体进化之间惊人的关系。

相似文献

1
Pervasive prophage recombination occurs during evolution of spore-forming Bacilli.
ISME J. 2021 May;15(5):1344-1358. doi: 10.1038/s41396-020-00854-1. Epub 2020 Dec 20.
2
Developmentally-regulated excision of the SPβ prophage reconstitutes a gene required for spore envelope maturation in Bacillus subtilis.
PLoS Genet. 2014 Oct 9;10(10):e1004636. doi: 10.1371/journal.pgen.1004636. eCollection 2014 Oct.
3
New Bacillus subtilis vector, pSSβ, as genetic tool for site-specific integration and excision of cloned DNA, and prophage elimination.
J Gen Appl Microbiol. 2022 Sep 15;68(2):71-78. doi: 10.2323/jgam.2021.10.004. Epub 2022 Apr 6.
5
Identification and characterization of integrated prophages and CRISPR-Cas system in Bacillus subtilis RS10 genome.
Braz J Microbiol. 2024 Mar;55(1):537-542. doi: 10.1007/s42770-024-01249-6. Epub 2024 Jan 13.
7
Plasmid-Mediated Stabilization of Prophages.
mSphere. 2022 Apr 27;7(2):e0093021. doi: 10.1128/msphere.00930-21. Epub 2022 Mar 21.
8
Regulated DNA rearrangement during sporulation in Bacillus weihenstephanensis KBAB4.
Mol Microbiol. 2013 Oct;90(2):415-27. doi: 10.1111/mmi.12375. Epub 2013 Sep 9.
9
The analysis of the function, diversity, and evolution of the Bacillus phage genome.
BMC Microbiol. 2023 Jun 19;23(1):170. doi: 10.1186/s12866-023-02907-9.
10
Phage-Encoded Sigma Factors Alter Bacterial Dormancy.
mSphere. 2022 Aug 31;7(4):e0029722. doi: 10.1128/msphere.00297-22. Epub 2022 Jul 20.

引用本文的文献

1
Lysogenic control of Bacillus subtilis morphology and fitness by Spbetavirus phi3T.
Commun Biol. 2025 Aug 18;8(1):1238. doi: 10.1038/s42003-025-08672-x.
3
Experimental evolution of a pathogen confronted with innate immune memory increases variation in virulence.
PLoS Pathog. 2025 Jun 18;21(6):e1012839. doi: 10.1371/journal.ppat.1012839. eCollection 2025 Jun.
4
Geographic variation in abundance and diversity of bacteriophages.
Front Microbiol. 2025 Jan 28;16:1522711. doi: 10.3389/fmicb.2025.1522711. eCollection 2025.
5
Large serine integrases utilise scavenged phage proteins as directionality cofactors.
Nucleic Acids Res. 2025 Jan 24;53(3). doi: 10.1093/nar/gkaf050.
6
synphage: a pipeline for phage genome synteny graphics focused on gene conservation.
Bioinform Adv. 2024 Aug 29;4(1):vbae126. doi: 10.1093/bioadv/vbae126. eCollection 2024.
7
Biologic and genomic characterization of a novel virulent phage phiA051, with high homology to prophages.
Front Vet Sci. 2024 Jul 18;11:1415685. doi: 10.3389/fvets.2024.1415685. eCollection 2024.
9
Arbitrium communication controls phage lysogeny through non-lethal modulation of a host toxin-antitoxin defence system.
Nat Microbiol. 2024 Jan;9(1):150-160. doi: 10.1038/s41564-023-01551-3. Epub 2024 Jan 4.

本文引用的文献

1
Ratiometric population sensing by a pump-probe signaling system in Bacillus subtilis.
Nat Commun. 2020 Mar 4;11(1):1176. doi: 10.1038/s41467-020-14840-w.
2
Complete Genome Sequences of 13 Bacillus subtilis Soil Isolates for Studying Secondary Metabolite Diversity.
Microbiol Resour Announc. 2020 Jan 9;9(2):e01406-19. doi: 10.1128/MRA.01406-19.
3
Bacteriophages benefit from generalized transduction.
PLoS Pathog. 2019 Jul 5;15(7):e1007888. doi: 10.1371/journal.ppat.1007888. eCollection 2019 Jul.
4
Phages Mediate Bacterial Self-Recognition.
Cell Rep. 2019 Apr 16;27(3):737-749.e4. doi: 10.1016/j.celrep.2019.03.070.
6
Bacteriophage-host arm race: an update on the mechanism of phage resistance in bacteria and revenge of the phage with the perspective for phage therapy.
Appl Microbiol Biotechnol. 2019 Mar;103(5):2121-2131. doi: 10.1007/s00253-019-09629-x. Epub 2019 Jan 24.
7
Collapse of genetic division of labour and evolution of autonomy in pellicle biofilms.
Nat Microbiol. 2018 Dec;3(12):1451-1460. doi: 10.1038/s41564-018-0263-y. Epub 2018 Oct 8.
8
Scaling read aligners to hundreds of threads on general-purpose processors.
Bioinformatics. 2019 Feb 1;35(3):421-432. doi: 10.1093/bioinformatics/bty648.
9
Rates of Mutation and Recombination in Siphoviridae Phage Genome Evolution over Three Decades.
Mol Biol Evol. 2018 May 1;35(5):1147-1159. doi: 10.1093/molbev/msy027.
10
Lysogeny is prevalent and widely distributed in the murine gut microbiota.
ISME J. 2018 Apr;12(4):1127-1141. doi: 10.1038/s41396-018-0061-9. Epub 2018 Feb 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验