Biomolecular Simulations Group , Institut Pasteur de Montevideo , Mataojo 2020 , CP 11400 Montevideo , Uruguay.
J Chem Theory Comput. 2019 Apr 9;15(4):2719-2733. doi: 10.1021/acs.jctc.9b00006. Epub 2019 Mar 13.
A new version of the coarse-grained (CG) SIRAH force field for proteins has been developed. Modifications to bonded and non-bonded interactions on the existing molecular topologies significantly ameliorate the structural description and flexibility of a non-redundant set of proteins. The SIRAH 2.0 force field has also been ported to the popular simulation package AMBER, which along with the former implementation in GROMACS expands significantly the potential range of users and performance of this CG force field on CPU/GPU codes. As a non-trivial example of its application, we undertook the structural and dynamical analysis of the most abundant and conserved calcium-binding protein, calmodulin (CaM). CaM is composed of two calcium-binding motifs called EF-hands, which in the presence of calcium specifically recognize a cognate peptide by embracing it. CG simulations of CaM bound to four calcium ions in the presence or absence of a binding peptide (holo and apo forms, respectively) resulted in good and stable ion coordination. The simulation of the holo form starting from an experimental structure sampled near-native conformations, retrieving quasi-atomistic precision. Removing the binding peptide enabled the EF-hands to perform large reciprocal movements, comparable to those observed in NMR structures. On the other hand, the isolated peptide starting from the helical conformation experienced spontaneous unfolding, in agreement with previous experimental data. However, repositioning the peptide in the neighborhood of one EF-hand not only prevented the peptide from unfolding but also drove CaM to a fully bound conformation, with both EF-hands embracing the cognate peptide, resembling the experimental holo structure. Therefore, SIRAH 2.0 shows the capacity to handle a number of structurally and dynamically challenging situations, including metal ion coordination, unbiased conformational sampling, and specific protein-peptide recognition.
一个新版本的粗粒(CG)SIRAH 蛋白质力场已经被开发出来。对现有分子拓扑结构的键合和非键相互作用的修改显著改善了一组非冗余蛋白质的结构描述和灵活性。SIRAH 2.0 力场也已经移植到流行的模拟包 AMBER 中,这与在 GROMACS 中的前一个实现一起,极大地扩展了这个 CG 力场在 CPU/GPU 代码上的潜在用户范围和性能。作为其应用的一个非平凡示例,我们对最丰富和最保守的钙结合蛋白钙调蛋白(CaM)进行了结构和动力学分析。CaM 由两个称为 EF 手的钙结合基序组成,在钙存在的情况下,EF 手通过拥抱特定的同源肽来特异性识别它。在存在或不存在结合肽(分别为全钙和脱钙形式)的情况下,对 CaM 与四个钙离子结合的 CG 模拟导致了良好和稳定的离子配位。从接近天然构象的实验结构开始模拟全钙形式,恢复了准原子精度。去除结合肽使得 EF 手能够进行大的相互运动,与 NMR 结构中观察到的运动相当。另一方面,从螺旋构象开始的孤立肽经历了自发展开,这与以前的实验数据一致。然而,将肽重新定位到一个 EF 手的附近不仅阻止了肽的展开,而且还使 CaM 处于完全结合的构象,两个 EF 手都拥抱了同源肽,类似于实验中的全钙结构。因此,SIRAH 2.0 显示出处理许多结构和动态具有挑战性的情况的能力,包括金属离子配位、无偏构象采样和特定的蛋白质-肽识别。