The University of Iowa, Department of Chemistry, E331 Chemistry Building, Iowa City, IA 52242, USA.
Dalton Trans. 2019 Mar 12;48(11):3777-3785. doi: 10.1039/c9dt00733d.
Metal complexes that form isolable, ligand-centered borenium ions (i.e. reactive three-coordinate boron cations) are rare, especially with highly-versatile diphosphorus ligands. Here we report the first structurally-characterized examples of ligand-centered borocations in a class of diphosphorus ligands derived from the bicyclic triaminoborane 1,8,10,9-triazaboradecalin (TBD). Treating (PhTBDPhos)Mo(CO)4 (1) with HOTf or HNTf2 resulted in protonation of the bridgehead α-nitrogen on the TBD backbone and formation of ligand-centered borenium ions (1-HOTf and 1-HNTf2, respectively), whereas reaction of 1 with HBF4·Et2O resulted in protonation of two α-nitrogen atoms and fluoride abstraction from BF4- to form a four-coordinate borocation in [1-H2F][BF4]. Single-crystal XRD data confirmed the formation of the borocations, and multinuclear NMR and IR spectroscopy studies were used to interrogate the electronic environment at molybdenum and boron. The 11B NMR resonances for the borenium ions in 1-HOTf and 1-HNTf2 (δ 29.5 and 29.6 ppm) were more deshielded than the resonance for 1 (δ 25.9 ppm), consistent with the decreased electron density at boron. The 31P NMR data revealed similar trends in response to increasing protonation on the TBD backbone, and aligned well with small, stepwise increases in Mo-CO stretching frequencies that followed the order borane (1) < borenium (1-HOTf and 1-HNTf2) < boronium ([1-H2F][BF4]). Density functional theory calculations conducted on 1, 1-HOTf, and [1-H2F][BF4] revealed subtle changes in boron and nitrogen atomic charges consistent with those calculated for more well-established borenium ions in metal-free systems. Overall, the results confirm previous observations of latent borenium ion reactivity in TBDPhos complexes.
形成可分离的、配体中心硼翁离子(即反应性三配位硼阳离子)的金属配合物很少见,特别是具有高度多功能膦配体的情况更是如此。在这里,我们报告了首例由双环三氨基硼烷 1,8,10,9-三氮杂硼杂环癸烷(TBD)衍生的一类双膦配体中配体中心硼正离子的结构特征实例。用 HOTf 或 HNTf2 处理(PhTBDPhos)Mo(CO)4(1)导致 TBD 骨架桥接α-氮质子化,并形成配体中心硼翁离子(分别为 1-HOTf 和 1-HNTf2),而 1 与 HBF4·Et2O 反应导致两个α-氮原子质子化,并从 BF4-中抽氟形成四配位硼正离子[1-H2F][BF4]。单晶 XRD 数据证实了硼正离子的形成,并利用多核 NMR 和 IR 光谱研究来探究钼和硼的电子环境。1-HOTf 和 1-HNTf2 中硼翁离子的11B NMR 共振(δ 29.5 和 29.6 ppm)比 1 的共振(δ 25.9 ppm)更去屏蔽,这与硼上电子密度的降低一致。31P NMR 数据表明,随着 TBD 骨架上质子化程度的增加,响应也呈现出相似的趋势,并且与 Mo-CO 伸缩频率的小、逐步增加相一致,其顺序为硼烷(1)<硼翁(1-HOTf 和 1-HNTf2)<硼鎓([1-H2F][BF4])。对 1、1-HOTf 和[1-H2F][BF4]进行的密度泛函理论计算揭示了硼和氮原子电荷的细微变化,与在无金属体系中更成熟的硼翁离子计算出的电荷变化一致。总的来说,这些结果证实了先前在 TBDPhos 配合物中存在潜在硼翁离子反应性的观察结果。