Suppr超能文献

毒素在新型镇痛药研发中的作用。

The Role of Toxins in the Pursuit for Novel Analgesics.

机构信息

The Institute for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel.

出版信息

Toxins (Basel). 2019 Feb 23;11(2):131. doi: 10.3390/toxins11020131.

Abstract

Chronic pain is a major medical issue which reduces the quality of life of millions and inflicts a significant burden on health authorities worldwide. Currently, management of chronic pain includes first-line pharmacological therapies that are inadequately effective, as in just a portion of patients pain relief is obtained. Furthermore, most analgesics in use produce severe or intolerable adverse effects that impose dose restrictions and reduce compliance. As the majority of analgesic agents act on the central nervous system (CNS), it is possible that blocking pain at its source by targeting nociceptors would prove more efficient with minimal CNS-related side effects. The development of such analgesics requires the identification of appropriate molecular targets and thorough understanding of their structural and functional features. To this end, plant and animal toxins can be employed as they affect ion channels with high potency and selectivity. Moreover, elucidation of the toxin-bound ion channel structure could generate pharmacophores for rational drug design while favorable safety and analgesic profiles could highlight toxins as leads or even as valuable therapeutic compounds themselves. Here, we discuss the use of plant and animal toxins in the characterization of peripherally expressed ion channels which are implicated in pain.

摘要

慢性疼痛是一个主要的医学问题,它降低了数百万人的生活质量,并给全球卫生当局带来了重大负担。目前,慢性疼痛的管理包括一线的药物治疗,但这些治疗效果并不理想,只有一部分患者的疼痛得到缓解。此外,大多数使用的镇痛药会产生严重或无法忍受的副作用,这就需要限制剂量,降低了患者的依从性。由于大多数镇痛药作用于中枢神经系统(CNS),因此通过靶向伤害感受器来阻断疼痛源可能会更有效,同时产生的与 CNS 相关的副作用也最小。这类镇痛药的开发需要确定合适的分子靶点,并深入了解其结构和功能特征。为此,可以使用植物和动物毒素,因为它们可以高效且选择性地作用于离子通道。此外,阐明毒素结合的离子通道结构可以为合理的药物设计生成药效团,而有利的安全性和镇痛特性可以突出毒素作为先导化合物,甚至本身就是有价值的治疗化合物。在这里,我们讨论了植物和动物毒素在鉴定与疼痛有关的外周表达离子通道中的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed52/6409898/717d9cd4696f/toxins-11-00131-g001.jpg

相似文献

1
The Role of Toxins in the Pursuit for Novel Analgesics.
Toxins (Basel). 2019 Feb 23;11(2):131. doi: 10.3390/toxins11020131.
2
Toxins in pain.
Curr Opin Support Palliat Care. 2018 Jun;12(2):132-141. doi: 10.1097/SPC.0000000000000335.
3
Animal toxins as analgesics--an overview.
Drug News Perspect. 2006 Sep;19(7):381-92. doi: 10.1358/dnp.2006.19.7.985940.
4
Modulation of nociceptive ion channels and receptors via protein-protein interactions: implications for pain relief.
Channels (Austin). 2015;9(4):175-85. doi: 10.1080/19336950.2015.1051270. Epub 2015 Jun 3.
5
An integrated view of the molecular toxinology of sodium channel gating in excitable cells.
Annu Rev Neurosci. 1987;10:237-67. doi: 10.1146/annurev.ne.10.030187.001321.
6
Elucidation of pathophysiology and treatment of neuropathic pain.
Cent Nerv Syst Agents Med Chem. 2012 Dec;12(4):304-14. doi: 10.2174/187152412803760645.
7
Therapeutic potential of peptide toxins that target ion channels.
Inflamm Allergy Drug Targets. 2011 Oct;10(5):322-42. doi: 10.2174/187152811797200696.
8
From foe to friend: using animal toxins to investigate ion channel function.
J Mol Biol. 2015 Jan 16;427(1):158-175. doi: 10.1016/j.jmb.2014.07.027. Epub 2014 Aug 1.
9
Conotoxins That Could Provide Analgesia through Voltage Gated Sodium Channel Inhibition.
Toxins (Basel). 2015 Dec 10;7(12):5386-407. doi: 10.3390/toxins7124890.
10
Selective Voltage-Gated Sodium Channel Peptide Toxins from Animal Venom: Pharmacological Probes and Analgesic Drug Development.
ACS Chem Neurosci. 2018 Feb 21;9(2):187-197. doi: 10.1021/acschemneuro.7b00406. Epub 2017 Dec 8.

引用本文的文献

1
Toxins from Animal Venom-A Rich Source of Active Compounds with High Pharmacological Potential.
Toxins (Basel). 2024 Nov 27;16(12):512. doi: 10.3390/toxins16120512.
2
Clinical proof-of-concept results with a novel TRPA1 antagonist (LY3526318) in 3 chronic pain states.
Pain. 2024 Dec 13;166(7):1497-1518. doi: 10.1097/j.pain.0000000000003487.
4
Functional effects of drugs and toxins interacting with Na1.4.
Front Pharmacol. 2024 Apr 25;15:1378315. doi: 10.3389/fphar.2024.1378315. eCollection 2024.
5
Unveiling the Pain Relief Potential: Harnessing Analgesic Peptides from Animal Venoms.
Pharmaceutics. 2023 Dec 13;15(12):2766. doi: 10.3390/pharmaceutics15122766.
6
Toxicity Mechanism of Dangerous Scorpion Stings in Iran.
J Arthropod Borne Dis. 2023 Jun 30;17(2):105-119. doi: 10.18502/jad.v17i2.13616. eCollection 2023 Jun.
7
Structural Conformation and Activity of Spider-Derived Inhibitory Cystine Knot Peptide Pn3a Are Modulated by pH.
ACS Omega. 2023 Jul 11;8(29):26276-26286. doi: 10.1021/acsomega.3c02664. eCollection 2023 Jul 25.
10
The Development of Mechanical Allodynia in Diabetic Rats Revealed by Single-Cell RNA-Seq.
Front Mol Neurosci. 2022 May 20;15:856299. doi: 10.3389/fnmol.2022.856299. eCollection 2022.

本文引用的文献

1
TRPA1: a molecular view.
J Neurophysiol. 2019 Feb 1;121(2):427-443. doi: 10.1152/jn.00524.2018. Epub 2018 Nov 28.
2
TRPV1 pore turret dictates distinct DkTx and capsaicin gating.
Proc Natl Acad Sci U S A. 2018 Dec 11;115(50):E11837-E11846. doi: 10.1073/pnas.1809662115. Epub 2018 Nov 21.
3
Involvement of mGluR5 and TRPV1 in visceral nociception in a rat model of uterine cervical distension.
Mol Pain. 2018 Jan-Dec;14:1744806918816850. doi: 10.1177/1744806918816850. Epub 2018 Nov 16.
4
TRPA1 Antagonists for Pain Relief.
Pharmaceuticals (Basel). 2018 Nov 1;11(4):117. doi: 10.3390/ph11040117.
5
Discovery of a Novel Na1.7 Inhibitor From Venom With Potent Analgesic Efficacy.
Front Pharmacol. 2018 Oct 16;9:1158. doi: 10.3389/fphar.2018.01158. eCollection 2018.
6
Capsaicin 8% Dermal Patch: A Review in Peripheral Neuropathic Pain.
Drugs. 2018 Sep;78(14):1489-1500. doi: 10.1007/s40265-018-0982-7.
7
Structural basis for the modulation of voltage-gated sodium channels by animal toxins.
Science. 2018 Oct 19;362(6412). doi: 10.1126/science.aau2596. Epub 2018 Jul 26.
9
Human pharmacological approaches to TRP-ion-channel-based analgesic drug development.
Drug Discov Today. 2018 Dec;23(12):2003-2012. doi: 10.1016/j.drudis.2018.06.020. Epub 2018 Jun 30.
10
NaV1.1 inhibition can reduce visceral hypersensitivity.
JCI Insight. 2018 Jun 7;3(11). doi: 10.1172/jci.insight.121000.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验