Suppr超能文献

用于连续介质方法的计算多尺度求解器

Computational Multiscale Solvers for Continuum Approaches.

作者信息

Montero-Chacón Francisco, Sanz-Herrera José A, Doblaré Manuel

机构信息

Departamento de Ingeniería, Universidad Loyola Andalucía, 41014 Seville, Spain.

Escuela Técnica Superior de Ingeniería, Universidad de Sevilla, 41092 Seville, Spain.

出版信息

Materials (Basel). 2019 Feb 26;12(5):691. doi: 10.3390/ma12050691.

Abstract

Computational multiscale analyses are currently ubiquitous in science and technology. Different problems of interest-e.g., mechanical, fluid, thermal, or electromagnetic-involving a domain with two or more clearly distinguished spatial or temporal scales, are candidates to be solved by using this technique. Moreover, the predictable capability and potential of multiscale analysis may result in an interesting tool for the development of new concept materials, with desired macroscopic or apparent properties through the design of their microstructure, which is now even more possible with the combination of nanotechnology and additive manufacturing. Indeed, the information in terms of field variables at a finer scale is available by solving its associated localization problem. In this work, a review on the algorithmic treatment of multiscale analyses of several problems with a technological interest is presented. The paper collects both classical and modern techniques of multiscale simulation such as those based on the proper generalized decomposition (PGD) approach. Moreover, an overview of available software for the implementation of such numerical schemes is also carried out. The availability and usefulness of this technique in the design of complex microstructural systems are highlighted along the text. In this review, the fine, and hence the coarse scale, are associated with continuum variables so atomistic approaches and coarse-graining transfer techniques are out of the scope of this paper.

摘要

计算多尺度分析目前在科学技术中无处不在。不同的感兴趣问题,例如机械、流体、热或电磁问题,涉及具有两个或更多明显不同空间或时间尺度的域,都是可以通过使用该技术来解决的候选问题。此外,多尺度分析的可预测能力和潜力可能会成为开发新概念材料的有趣工具,通过设计其微观结构来获得所需的宏观或表观性能,而随着纳米技术和增材制造的结合,现在这一点变得更有可能实现。实际上,通过解决其相关的局部化问题,可以获得更精细尺度上的场变量信息。在这项工作中,对具有技术兴趣的几个问题的多尺度分析的算法处理进行了综述。本文收集了多尺度模拟的经典和现代技术,例如基于适当广义分解(PGD)方法的技术。此外,还对用于实现此类数值方案的可用软件进行了概述。本文自始至终都强调了该技术在复杂微观结构系统设计中的可用性和实用性。在本综述中,精细尺度以及因此的粗尺度都与连续变量相关,因此原子方法和粗粒化转移技术不在本文讨论范围内。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1248/6427293/0da9a3231d08/materials-12-00691-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验