Suppr超能文献

用于心脏电生理学中单域方程数值解的自适应宏观有限元。

Adaptive macro finite elements for the numerical solution of monodomain equations in cardiac electrophysiology.

机构信息

Group of Structural Mechanics and Materials Modeling, Aragón Institute of Engineering Research (I3A), Universidad de Zaragoza, Zaragoza, Spain.

出版信息

Ann Biomed Eng. 2010 Jul;38(7):2331-45. doi: 10.1007/s10439-010-9997-2. Epub 2010 Mar 18.

Abstract

Many problems in biology and engineering are governed by anisotropic reaction-diffusion equations with a very rapidly varying reaction term. This usually implies the use of very fine meshes and small time steps in order to accurately capture the propagating wave while avoiding the appearance of spurious oscillations in the wave front. This work develops a family of macro finite elements amenable for solving anisotropic reaction-diffusion equations with stiff reactive terms. The developed elements are incorporated on a semi-implicit algorithm based on operator splitting that includes adaptive time stepping for handling the stiff reactive term. A linear system is solved on each time step to update the transmembrane potential, whereas the remaining ordinary differential equations are solved uncoupled. The method allows solving the linear system on a coarser mesh thanks to the static condensation of the internal degrees of freedom (DOF) of the macroelements while maintaining the accuracy of the finer mesh. The method and algorithm have been implemented in parallel. The accuracy of the method has been tested on two- and three-dimensional examples demonstrating excellent behavior when compared to standard linear elements. The better performance and scalability of different macro finite elements against standard finite elements have been demonstrated in the simulation of a human heart and a heterogeneous two-dimensional problem with reentrant activity. Results have shown a reduction of up to four times in computational cost for the macro finite elements with respect to equivalent (same number of DOF) standard linear finite elements as well as good scalability properties.

摘要

许多生物学和工程学问题都受各向异性反应扩散方程控制,这些方程的反应项变化非常快。为了准确捕捉传播波,同时避免波前出现虚假振荡,通常需要使用非常细的网格和小的时间步长。这项工作开发了一系列适用于求解具有刚性反应项的各向异性反应扩散方程的宏观有限元。所开发的单元被纳入基于算子分裂的半隐式算法中,该算法包括自适应时间步长处理刚性反应项。在线性系统的每个时间步上求解线性系统以更新跨膜电势,而其余的常微分方程则是解耦的。该方法允许在更粗的网格上求解线性系统,这得益于宏观单元内部自由度(DOF)的静态凝结,同时保持了更细网格的精度。该方法和算法已经在并行环境中实现。该方法的准确性已在二维和三维示例中进行了测试,与标准线性单元相比,表现出了优异的性能。在模拟人心和具有折返活动的二维非均匀问题中,不同宏观有限元与标准有限元相比,展示了更好的性能和可扩展性。结果表明,与等效(相同自由度数量)标准线性有限元相比,宏观有限元的计算成本降低了 4 倍,同时具有良好的可扩展性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验